Synopsis ignificant gains in the performance of the global optimisation algorithm in the DASH software package have been realised using the irace automatic configuration tool and are demonstrated using over 100 powder diffraction data sets. Abstract Significant gains in the performance of the simulated annealing algorithm in the DASH software package have been realised by using the irace automatic configuration tool to optimise the values of three key simulated annealing parameters. Specifically, the success rate in finding the global minimum in intensity 2 space is improved by up to an order of magnitude. The general applicability of these revised simulated annealing parameters is demonstrated using the crystal structure determinations of over 100 powder diffraction data sets.
The constant increase in cardiovascular disease rate coupled with significant drawbacks of existing therapies emphasise the necessity to improve therapeutic strategies. Natural flavonoids exert innumerable pharmacological effects in humans. Here, we demonstrate the effects of chrysin, a natural flavonoid found largely in honey and passionflower on the modulation of platelet function, haemostasis and thrombosis. Chrysin displayed significant inhibitory effects on isolated platelets, however, its activity was substantially reduced under physiological conditions. In order to increase the efficacy of chrysin, a sulfur derivative (thio-chrysin), and ruthenium-complexes (Ru-chrysin and Ru-thio-chrysin) were synthesised and their effects on the modulation of platelet function were evaluated. Indeed, Ru-thio-chrysin displayed a 4-fold greater inhibition of platelet function and thrombus formation in vitro than chrysin under physiologically relevant conditions such as in platelet-rich plasma and whole blood. Notably, Ru-thio-chrysin exhibited similar efficacy to chrysin in the modulation of haemostasis in mice. Increased bioavailability and cell permeability of Ru-thio-chrysin compared to chrysin were found to be the basis for its enhanced activity. Together, these results demonstrate that Ru-thio-coupled natural compounds such as chrysin may serve as promising templates for the development of novel anti-thrombotic agents.
Solving pharmaceutical crystal structures from powder diffraction data is discussed in terms of the methodologies that have been applied and the complexity of the structures that have been solved. The principles underlying these methodologies are summarized and representative examples of polymorph, solvate, salt and cocrystal structure solutions are provided, together with examples of some particularly challenging structure determinations.
Low molecular weight additives which can cooperatively self-assemble with supramolecular polyurethanes via complementary hydrogen bonding interactions offer an attractive route to enhancing the properties of addressable polymer networks. Here, we present the design, synthesis, characterisation and mechanical properties of a series of supramolecular polyurethanes with varied loadings of a low molecular weight bis-urea additive. These additives are able to self-assemble with analogous recognition motifs within the supramolecular polyurethanes to form polar 'hard' domains, promoting phase separation within the material and, crucially, increasing the strength of the polymer network. In addition, the bis-urea additive is a by-product within the polymerisation and thus can be synthesised in situ, without the need for complex purification or blending. The mechanical properties of these reinforced polymers were enhanced when compared to the pristine supramolecular polyurethane alone, as a result of higher degrees of order within the polymer matrix. Furthermore, a formulation comprising the small molecule blended with the supramolecular polyurethane was produced to examine the effect of material preparation and filler dispersion within the polymer matrix. Interestingly, the mechanical performance of a blended material was diminished as a result of modest dispersion and incorporation within the polymer matrix. These findings thus demonstrate a facile, one-pot, method that does not require purification to produce reinforced supramolecular polyurethanes. This methodology may find use in industrial applications in which enhancements to the physical and mechanical properties can be easily achieved through the in situ synthesis of low molecular weight additives within the polymerisation.
The effect of introducing conformational information to the DASH implementation of crystal structure determination from powder diffraction data is investigated using 51 crystal structures, with the aim of allowing increasingly complex crystal structures to be solved more easily. The findings confirm that conformational information derived from the Cambridge Structural Database is indeed of value, considerably increasing the chances of obtaining a successful structure determination. Its routine use is therefore encouraged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.