Figure 1: SkelNetOn Challenges: Example shapes and corresponding skeletons are demonstrated for the three challenge tracks in pixel (left), point (middle), and parametric domain (right). AbstractWe present SkelNetOn 2019 Challenge and Deep Learning for Geometric Shape Understanding workshop to utilize existing and develop novel deep learning architectures for shape understanding. We observed that unlike traditional segmentation and detection tasks, geometry understanding is still a new area for deep learning techniques. SkelNetOn aims to bring together researchers from different domains to foster learning methods on global shape understanding tasks. We aim to improve and evaluate the state-of-theart shape understanding approaches, and to serve as reference benchmarks for future research. Similar to other challenges in computer vision [6,22], SkelNetOn proposes three datasets and corresponding evaluation methodologies; all coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2019 conference. In this paper, we describe and analyze characteristics of datasets, define the evaluation criteria of the public competitions, and provide baselines for each task.Computer vision approaches have shown tremendous progress toward understanding shapes from various data formats, especially since entering the deep learning era. Although detection, recognition, and segmentation approaches achieve highly accurate results, there has been rel-arXiv:1903.09233v3 [cs.CV]
We propose a new procedure to guide training of a datadriven shape generative model using a structure-aware loss function. Complex 3D shapes often can be summarized using a coarsely defined structure which is consistent and robust across variety of observations. However, existing synthesis techniques do not account for structure during training, and thus often generate implausible and structurally unrealistic shapes. During training, we enforce structural constraints in order to enforce consistency and structure across the entire manifold. We propose a novel methodology for training 3D generative models that incorporates structural information into an end-to-end training pipeline. 1
Designing fonts and typefaces is a difficult process for both beginner and expert typographers. Existing workflows require the designer to create every glyph, while adhering to many loosely defined design suggestions to achieve an aesthetically appealing and coherent character set. This process can be significantly simplified by exploiting the similar structure character glyphs present across different fonts and the shared stylistic elements within the same font. To capture these correlations, we propose learning a stroke‐based font representation from a collection of existing typefaces. To enable this, we develop a stroke‐based geometric model for glyphs, a fitting procedure to reparametrize arbitrary fonts to our representation. We demonstrate the effectiveness of our model through a manifold learning technique that estimates a low‐dimensional font space. Our representation captures a wide range of everyday fonts with topological variations and naturally handles discrete and continuous variations, such as presence and absence of stylistic elements as well as slants and weights. We show that our learned representation can be used for iteratively improving fit quality, as well as exploratory style applications such as completing a font from a subset of observed glyphs, interpolating or adding and removing stylistic elements in existing fonts.
We present a novel framework that learns to predict human anatomy from body surface. Specifically, our approach generates a synthetic X-ray image of a person only from the person's surface geometry. Furthermore, the synthetic Xray image is parametrized and can be manipulated by adjusting a set of body markers which are also generated during the X-ray image prediction. With the proposed framework, multiple synthetic X-ray images can easily be generated by varying surface geometry. By perturbing the parameters, several additional synthetic X-ray images can be generated from the same surface geometry. As a result, our approach offers a potential to overcome the training data barrier in the medical domain. This capability is achieved by learning a pair of networks -one learns to generate the full image from the partial image and a set of parameters, and the other learns to estimate the parameters given the full image. During training, the two networks are trained iteratively such that they would converge to a solution where the predicted parameters and the full image are consistent with each other. In addition to medical data enrichment, our framework can also be used for image completion as well as anomaly detection. 1
Automatic delineation and measurement of main organs such as liver is one of the critical steps for assessment of hepatic diseases, planning and postoperative or treatment follow-up. However, addressing this problem typically requires performing computed tomography (CT) scanning and complicated postprocessing of the resulting scans using slice-by-slice techniques. In this paper, we show that 3D organ shape can be automatically predicted directly from topogram images, which are easier to acquire and have limited exposure to radiation during acquisition, compared to CT scans. We evaluate our approach on the challenging task of predicting liver shape using a generative model. We also demonstrate that our method can be combined with user annotations, such as a 2D mask, for improved prediction accuracy. We show compelling results on 3D liver shape reconstruction and volume estimation on 2129 CT scans. 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.