Purpose: In cancer cells, the epigenome is often deregulated, and inhibition of the bromodomain and extra-terminal (BET) family of bromodomain-containing proteins is a novel epigenetic therapeutic approach. Preliminary results of an ongoing phase I trial have reported promising activity and tolerability with the new BET bromodomain inhibitor OTX015.Experimental Design: We assessed the preclinical activity of OTX015 as single agent and in combination in mature B-cell lymphoma models and performed in vitro and in vivo experiments to identify the mechanism of action and the genetic features associated with sensitivity to the compound.Results: OTX015 showed antiproliferative activity in a large panel of cell lines derived from mature B-cell lymphoid tumors with median IC 50 of 240 nmol/L, without significant differences among the different histotypes. In vitro and in vivo experiments showed that OTX015 targeted NFKB/TLR/JAK/STAT signaling pathways, MYC-and E2F1-regulated genes, cell-cycle regulation, and chromatin structure. OTX015 presented in vitro synergism with several anticancer agents, especially with mTOR and BTK inhibitors. Gene expression signatures associated with different degrees of sensitivity to OTX015 were identified. Although OTX015 was mostly cytostatic, the compound induced apoptosis in a genetically defined subgroup of cells, derived from activated B-cell-like diffuse large B-cell lymphoma, bearing wtTP53, mutations in MYD88, and CD79B or CARD11.Conclusions: Together with the data coming from the ongoing phase I study, the in vitro and in vivo data presented here provide the basis for further clinical investigation of OTX015 as single agent and in combination therapies.
Activation of the PI3K/mTOR signaling pathway is recurrent in different lymphoma types, and pharmacologic inhibition of the PI3K/mTOR pathway has shown activity in lymphoma patients. Here, we extensively characterized the and activity and the mechanism of action of PQR309 (bimiralisib), a novel oral selective dual PI3K/mTOR inhibitor under clinical evaluation, in preclinical lymphoma models. This study included preclinical activity screening on a large panel of cell lines, both as single agent and in combination, validation experiments on models and primary cells, proteomics and gene-expression profiling, and comparison with other signaling inhibitors. PQR309 had antilymphoma activity as single agent and in combination with venetoclax, panobinostat, ibrutinib, lenalidomide, ARV-825, marizomib, and rituximab. Sensitivity to PQR309 was associated with specific baseline gene-expression features, such as high expression of transcripts coding for the BCR pathway. Combining proteomics and RNA profiling, we identified the different contribution of PQR309-induced protein phosphorylation and gene expression changes to the drug mechanism of action. Gene-expression signatures induced by PQR309 and by other signaling inhibitors largely overlapped. PQR309 showed activity in cells with primary or secondary resistance to idelalisib. On the basis of these results, PQR309 appeared as a novel and promising compound that is worth developing in the lymphoma setting. .
The epigenome is often deregulated in cancer and treatment with inhibitors of bromodomain and extra-terminal proteins, the readers of epigenetic acetylation marks, represents a novel therapeutic approach. Here, we have characterized the anti-tumour activity of the novel bromodomain and extra-terminal (BET) inhibitor BAY 1238097 in preclinical lymphoma models. BAY 1238097 showed anti-proliferative activity in a large panel of lymphoma-derived cell lines, with a median 50% inhibitory concentration between 70 and 208 nmol/l. The compound showed strong anti-tumour efficacy in vivo as a single agent in two diffuse large B cell lymphoma models. Gene expression profiling showed BAY 1238097 targeted the NFKB/TLR/JAK/STAT signalling pathways, MYC and E2F1-regulated genes, cell cycle regulation and chromatin structure. The gene expression profiling signatures also highly overlapped with the signatures obtained with other BET Bromodomain inhibitors and partially overlapped with HDAC-inhibitors, mTOR inhibitors and demethylating agents. Notably, BAY 1238097 presented in vitro synergism with EZH2, mTOR and BTK inhibitors. In conclusion, the BET inhibitor BAY 1238097 presented promising anti-lymphoma preclinical activity in vitro and in vivo, mediated by the interference with biological processes driving the lymphoma cells. Our data also indicate the use of combination schemes targeting EZH2, mTOR and BTK alongside BET bromodomains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.