Purpose: In cancer cells, the epigenome is often deregulated, and inhibition of the bromodomain and extra-terminal (BET) family of bromodomain-containing proteins is a novel epigenetic therapeutic approach. Preliminary results of an ongoing phase I trial have reported promising activity and tolerability with the new BET bromodomain inhibitor OTX015.Experimental Design: We assessed the preclinical activity of OTX015 as single agent and in combination in mature B-cell lymphoma models and performed in vitro and in vivo experiments to identify the mechanism of action and the genetic features associated with sensitivity to the compound.Results: OTX015 showed antiproliferative activity in a large panel of cell lines derived from mature B-cell lymphoid tumors with median IC 50 of 240 nmol/L, without significant differences among the different histotypes. In vitro and in vivo experiments showed that OTX015 targeted NFKB/TLR/JAK/STAT signaling pathways, MYC-and E2F1-regulated genes, cell-cycle regulation, and chromatin structure. OTX015 presented in vitro synergism with several anticancer agents, especially with mTOR and BTK inhibitors. Gene expression signatures associated with different degrees of sensitivity to OTX015 were identified. Although OTX015 was mostly cytostatic, the compound induced apoptosis in a genetically defined subgroup of cells, derived from activated B-cell-like diffuse large B-cell lymphoma, bearing wtTP53, mutations in MYD88, and CD79B or CARD11.Conclusions: Together with the data coming from the ongoing phase I study, the in vitro and in vivo data presented here provide the basis for further clinical investigation of OTX015 as single agent and in combination therapies.
Summary A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK− ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 155 ALK− ALCLs and demonstrated that 38% of systemic ALK− ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK− ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.
Following publication of the manuscript, the authors identified an inadvertent error in the summary. The analysis exploring the presence of activating mutations in JAK1 and/or STAT3 was conducted in a total of 155 ALCLs, of which 88 were systemic ALK À ALCLs. The ''155'' in the sentence ''We identified activating mutations of JAK1 and/or STAT3 genes in $20% of 155 ALK À ALCLs and demonstrated that 38% of systemic ALK À ALCLs displayed double lesions'' therefore should be ''88'' instead. The correct sentence should read as follows: ''We identified activating mutations of JAK1 and/or STAT3 genes in $20% of 88 ALK À ALCLs and demonstrated that 38% of systemic ALK À ALCLs displayed double lesions.'' The error has been corrected in the online version of the article.
Key Points• The commonest lesions in anaplastic large cell lymphomas are losses at 17p13 and at 6q21, concomitant in up to onequarter of the cases. • PRDM1 (BLIMP1) gene (6q21) is inactivated by multiple mechanisms and acts as a tumor suppressor gene in anaplastic large B-cell lymphoma.Anaplastic large cell lymphoma (ALCL) is a mature T-cell lymphoma that can present as a systemic or primary cutaneous disease. Systemic ALCL represents 2% to 5% of adult lymphoma but up to 30% of all pediatric cases. Two subtypes of systemic ALCL are currently recognized on the basis of the presence of a translocation involving the anaplastic lymphoma kinase ALK gene. Despite considerable progress, several questions remain open regarding the pathogenesis of both ALCL subtypes. To investigate the molecular pathogenesis and to assess the relationship between the ALK 1 and ALK 2 ALCL subtypes, we performed a genome-wide DNA profiling using high-density, single nucleotide polymorphism arrays on a series of 64 cases and 7 cell lines. The commonest lesions were losses at 17p13 and at 6q21, encompassing the TP53 and PRDM1 genes, respectively. The latter gene, coding for BLIMP1, was inactivated by multiple mechanisms, more frequently, but not exclusively, in ALK 2 ALCL. In vitro and in vivo experiments showed that that PRDM1 is a tumor suppressor gene in ALCL models, likely acting as an antiapoptotic agent. Losses of TP53 and/or PRDM1 were present in 52% of ALK 2 ALCL, and in 29% of all ALCL cases with a clinical implication. (Blood. 2013;122(15):2683-2693
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.