While most of the literature on measurement error focuses on additive measurement error, we consider in this paper the multiplicative case. We apply the Simulation Extrapolation method (SIMEX)-a procedure which was originally proposed by Cook and Stefanski (J. Am. Stat. Assoc. 89:1314Assoc. 89: -1328Assoc. 89: , 1994 in order to correct the bias due to additive measurement error-to the case where data are perturbed by multiplicative noise and present several approaches to account for multiplicative noise in the SIMEX procedure. Furthermore, we analyze how well these approaches reduce the bias caused by multiplicative perturbation. Using a binary probit model, we produce Monte Carlo evidence on how the reduction of data quality can be minimized.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract Whereas the literature on additive measurement error has known a considerable treatment, less work has been done for multiplicative noise. In this paper we concentrate on multiplicative measurement error in the covariates, which contrary to additive error not only modifies proportionally the original value, but also conserves the structural zeros. Terms of use: Documents inThis paper compares three variants to specify the multiplicative measurement error model in the simulation step of the Simulation-Extrapolation (SIMEX) method originally proposed by Cook and Stefanski (1994): i) as an additive one without using a logarithmic transformation, ii) as the well-known logarithmic transformation of the multiplicative error model, and iii) as an approach using the multiplicative measurement error model as such. The aim of the paper is to analyze how well these three approaches reduce the bias caused by the multiplicative measurement error. We apply three variants to the case of data masking by multiplicative measurement error, in order to obtain parameter estimates of the true data generating process. We produce Monte Carlo evidence on how the reduction of data quality can be minimized.JEL classification: C13, C21
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Editor Jan Smets, Governor of the National Bank of Belgium Terms of use: Documents in Statement of purpose:The purpose of these working papers is to promote the circulation of research results (Research Series) and analytical studies (Documents Series) made within the National Bank of Belgium or presented by external economists in seminars, conferences and conventions organised by the Bank. The aim is therefore to provide a platform for discussion. The opinions expressed are strictly those of the authors and do not necessarily reflect the views of the National Bank of Belgium. OrdersFor orders and information on subscriptions and reductions: National Bank of Belgium, Documentation -Publications service, boulevard de Berlaimont 14, 1000 BrusselsTel +32 2 221 20 33 -Fax +32 2 21 30 42The Working Papers are available on the website of the Bank: http://www.nbb.be © National Bank of Belgium, BrusselsAll rights reserved. Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged.
In the project "Combined firm data for Germany" (KombiFiD) firm data from different institutions were merged and made available for research for the first time. The institutions involved in the project faced considerable challenges both due to the narrow legal limits underlying such a merging procedure and as a result of the partial lack of a unique identifier. This paper provides an overview of the objectives associated with the project and its progress.
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.