Recurring epidemics of kiwifruit (Actinidia spp.) bleeding canker disease are caused by Pseudomonas syringae pv. actinidiae (Psa). In order to strengthen understanding of population structure, phylogeography, and evolutionary dynamics, we isolated Pseudomonas from cultivated and wild kiwifruit across six provinces in China. Based on the analysis of 80 sequenced Psa genomes, we show that China is the origin of the pandemic lineage but that strain diversity in China is confined to just a single clade. In contrast, Korea and Japan harbor strains from multiple clades. Distinct independent transmission events marked introduction of the pandemic lineage into New Zealand, Chile, Europe, Korea, and Japan. Despite high similarity within the core genome and minimal impact of within-clade recombination, we observed extensive variation even within the single clade from which the global pandemic arose.
Horizontal gene transfer can precipitate rapid evolutionary change. In 2010 the global pandemic of kiwifruit canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) reached New Zealand. At the time of introduction, the single clone responsible for the outbreak was sensitive to copper, however, analysis of a sample of isolates taken in 2015 and 2016 showed that a quarter were copper resistant. Genome sequences of seven strains showed that copper resistance - comprising czc/cusABC and copABCD systems - along with resistance to arsenic and cadmium, was acquired via uptake of integrative conjugative elements (ICEs), but also plasmids. Comparative analysis showed ICEs to have a mosaic structure, with one being a tripartite arrangement of two different ICEs and a plasmid that were isolated in 1921 (USA), 1968 (NZ) and 1988 (Japan), from P. syringae pathogens of millet, wheat and kiwifruit respectively. Two of the Psa ICEs were nearly identical to two ICEs isolated from kiwifruit leaf colonists prior to the introduction of Psa into NZ. Additionally, we show ICE transfer in vitro and in planta, analyze fitness consequences of ICE carriage, capture the de novo formation of novel recombinant ICEs, and explore ICE host-range.
Lateral gene transfer can precipitate rapid evolutionary change. In 2010 the global pandemic of kiwifruit canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) reached New Zealand. At the time of introduction, the single clone responsible for the outbreak was sensitive to copper, however, analysis of a sample of isolates taken in 2015 and 2016 showed that a quarter were copper resistant. Genome sequences of seven strains showed that copper resistance (comprising czc/cusABC and copABCD systems) along with resistance to arsenic and cadmium, was acquired via uptake of integrative conjugative elements (ICEs), but also plasmids. Comparative analysis showed ICEs to have a mosaic structure, with one being a tripartite arrangement of two different ICEs and a plasmid that were isolated in 1921 (USA), 1968 (NZ) and 1988 (Japan), from P. syringae pathogens of millet, wheat and kiwifruit, respectively. Two of the Psa ICEs were nearly identical to two ICEs isolated from kiwifruit leaf colonists prior to the introduction of Psa into NZ. Additionally, we show ICE transfer in vitro and in planta, analyze fitness consequences of ICE carriage, capture the de novo formation of novel recombinant ICEs, and explore ICE host-range.
Members of the Mesorhizobium genus are soil bacteria that often form nitrogen-fixing symbioses with legumes. Most characterised Mesorhizobium spp. genomes are ~8 Mb in size and harbour extensive pangenomes including large integrative and conjugative elements (ICEs) carrying genes required for symbiosis (ICESyms). Here, we document and compare the conjugative mobilome of 41 complete Mesorhizobium genomes. We delineated 56 ICEs and 24 integrative and mobilizable elements (IMEs) collectively occupying 16 distinct integration sites, along with 24 plasmids. We also demonstrated horizontal transfer of the largest (853,775 bp) documented ICE, the tripartite ICEMspSymAA22. The conjugation systems of all identified ICEs and several plasmids were related to those of the paradigm ICESym ICEMlSymR7A, with each carrying conserved genes for conjugative pilus formation (trb), excision (rdfS), DNA transfer (rlxS) and regulation (fseA). ICESyms have likely evolved from a common ancestor, despite occupying a variety of distinct integration sites and specifying symbiosis with diverse legumes. We found extensive evidence for recombination between ICEs and particularly ICESyms, which all uniquely lack the conjugation entry-exclusion factor gene trbK. Frequent duplication, replacement and pseudogenization of genes for quorum-sensing-mediated activation and antiactivation of ICE transfer suggests ICE transfer regulation is constantly evolving. Pangenome-wide association analysis of the ICE identified genes potentially involved in symbiosis, rhizosphere colonisation and/or adaptation to distinct legume hosts. In summary, the Mesorhizobium genus has accumulated a large and dynamic pangenome that evolves through ongoing horizontal gene transfer of large conjugative elements related to ICEMlSymR7A.
Rhizobia are soil bacteria capable of forming N2-fixing symbioses with legumes, with highly effective strains often selected in agriculture as inoculants to maximize symbiotic N2 fixation. When rhizobia in the genus Mesorhizobium have been introduced with exotic legumes into farming systems, horizontal transfer of symbiosis Integrative and Conjugative Elements (ICEs) from the inoculant strain to soil bacteria has resulted in the evolution of ineffective N2-fixing rhizobia that are competitive for nodulation with the target legume. In Australia, Cicer arietinum (chickpea) has been inoculated since the 1970’s with Mesorhizobium ciceri sv. ciceri CC1192, a highly effective strain from Israel. Although the full genome sequence of this organism is available, little is known about the mobility of its symbiosis genes and the diversity of cultivated C. arietinum-nodulating organisms. Here, we show the CC1192 genome harbors a 419-kb symbiosis ICE (ICEMcSym1192) and a 648-kb repABC-type plasmid pMC1192 carrying putative fix genes. We sequenced the genomes of 11 C. arietinum nodule isolates from a field site exclusively inoculated with CC1192 and showed they were diverse unrelated Mesorhizobium carrying ICEMcSym1192, indicating they had acquired the ICE by environmental transfer. No exconjugants harboured pMc1192 and the plasmid was not essential for N2 fixation in CC1192. Laboratory conjugation experiments confirmed ICEMcSym1192 is mobile, integrating site-specifically within the 3’ end of one of the four ser-tRNA genes in the R7ANS recipient genome. Strikingly, all ICEMcSym1192 exconjugants were as efficient at fixing N2 with C. arietinum as CC1192, demonstrating ICE transfer does not necessarily yield ineffective microsymbionts as previously observed.Importance Symbiotic N2 fixation is a key component of sustainable agriculture and in many parts of the world legumes are inoculated with highly efficient strains of rhizobia to maximise fixed N2 inputs into farming systems. Symbiosis genes for Mesorhizobium spp. are often encoded chromosomally within mobile gene clusters called Integrative and Conjugative Elements or ICEs. In Australia, where all agricultural legumes and their rhizobia are exotic, horizontal transfer of ICEs from inoculant Mesorhizobium strains to native rhizobia has led to the evolution of inefficient strains that outcompete the original inoculant, with the potential to render it ineffective. However, the commercial inoculant strain for Cicer arietinum (chickpea), M. ciceri CC1192, has a mobile symbiosis ICE (ICEMcSym1192) which can support high rates of N2 fixation following either environmental or laboratory transfer into diverse Mesorhizobium backgrounds, demonstrating ICE transfer does not necessarily yield ineffective microsymbionts as previously observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.