Time-resolved single-cell analysis and pharmacological perturbations reveal a new regulatory interplay between PI3K-like kinases in response to DNA double-strand breaks: upon loss of DNA-PKcs activity, ATM is hyperactivated and induces an amplified p53 response, which sensitizes cells for damage-induced senescence.
Cellular signaling systems precisely transmit information in the presence of molecular noise while retaining flexibility to accommodate the needs of individual cells. To understand design principles underlying such versatile signaling, we analyzed the response of the tumor suppressor p53 to varying levels of DNA damage in hundreds of individual cells and observed a switch between distinct signaling modes characterized by isolated pulses and sustained oscillations of p53 accumulation. Guided by dynamic systems theory we show that this requires an excitable network structure comprising positive feedback and provide experimental evidence for its molecular identity. The resulting data-driven model reproduced all features of measured signaling responses and is sufficient to explain their heterogeneity in individual cells. We present evidence that heterogeneity in the levels of the feedback regulator Wip1 sets cell-specific thresholds for p53 activation, providing means to modulate its response through interacting signaling pathways. Our results demonstrate how excitable signaling networks can provide high specificity, sensitivity and robustness while retaining unique possibilities to adjust their function to the physiology of individual cells.
Cells need to preserve genome integrity despite varying cellular and physical states. p53, the guardian of the genome, plays a crucial role in the cellular response to DNA damage by triggering cell cycle arrest, apoptosis or senescence. Mutations in p53 or alterations in its regulatory network are major driving forces in tumorigenesis. As multiple studies indicate beneficial effects for hyperthermic treatments during radiation-or chemotherapy of human cancers, we aimed to understand how p53 dynamics after genotoxic stress are modulated by changes in temperature across a physiological relevant range. To this end, we employed a combination of time-resolved live-cell microscopy and computational analysis techniques to characterise the p53 response in thousands of individual cells. Our results demonstrate that p53 dynamics upon ionizing radiation are temperature dependent. In the range of 33 °C to 39 °C, pulsatile p53 dynamics are modulated in their frequency. Above 40 °C, which corresponds to mild hyperthermia in a clinical setting, we observed a reversible phase transition towards sustained hyperaccumulation of p53 disrupting its canonical response to DNA double strand breaks. Moreover, we provide evidence that mild hyperthermia alone is sufficient to induce a p53 response in the absence of genotoxic stress. These insights highlight how the p53-mediated DNA damage response is affected by alterations in the physical state of a cell and how this can be exploited by appropriate timing of combination therapies to increase the efficiency of cancer treatments.
The transcription factors NF-κB and p53 are key regulators in the genotoxic stress response and are critical for tumor development. Although there is ample evidence for interactions between both networks, a comprehensive understanding of the crosstalk is lacking. Here, we developed a systematic approach to identify potential interactions between the pathways. We perturbed NF-κB signaling by inhibiting IKK2, a critical regulator of NF-κB activity, and monitored the altered response of p53 to genotoxic stress using single cell time lapse microscopy. Fitting subpopulation-specific computational p53 models to this time-resolved single cell data allowed to reproduce in a quantitative manner signaling dynamics and cellular heterogeneity for the unperturbed and perturbed conditions. The approach enabled us to untangle the integrated effects of IKK/ NF-κB perturbation on p53 dynamics and thereby derive potential interactions between both networks. Intriguingly, we find that a simultaneous perturbation of multiple processes is necessary to explain the observed changes in the p53 response. Specifically, we show interference with the activation and degradation of p53 as well as the degradation of Mdm2. Our results highlight the importance of the crosstalk and its potential implications in p53-dependent cellular functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.