Activation of nuclear factor κB (NF-κB) by interleukin-1β (IL-1) usually results in an anti-apoptotic activity that is rapidly terminated by a negative feedback loop involving NF-κB dependent resynthesis of its own inhibitor IκBα. However, apoptosis induced by ultraviolet B radiation (UVB) is not attenuated, but significantly enhanced by co-stimulation with IL-1 in human epithelial cells. Under these conditions NF-κB remains constitutively active and turns into a pro-apoptotic factor by selectively repressing anti-apoptotic genes. Two different mechanisms have been separately proposed to explain UV-induced lack of IκBα recurrence: global translational inhibition as well as deactivation of the Ser/Thr phosphatase PP2Ac. Using mathematical modelling, we show that the systems behaviour requires a combination of both mechanisms, and we quantify their contribution in different settings. A mathematical model including both mechanisms is developed and fitted to various experimental data sets. A comparison of the model results and predictions with model variants lacking one of the mechanisms shows that both mechanisms are present in our experimental setting. The model is successfully validated by the prediction of independent data. Weak constitutive IKKβ phosphorylation is shown to be a decisive process in IκBα degradation induced by UVB stimulation alone, but irrelevant for (co-)stimulations with IL-1. In silico knockout experiments show that translational inhibition is predominantly responsible for lack of IκBα recurrence following IL-1+UVB stimulation. In case of UVB stimulation alone, cooperation of both processes causes the observed decrease of IκBα. This shows that the processes leading to activation of transcription factor NF-κB upon stimulation with ultraviolet B radiation with and without interleukin-1 costimulation are more complex than previously thought, involving both a cross talk of UVB induced translational inhibition and PP2Ac deactivation. The importance of each of the mechanisms depends on the specific cellular setting.
The transcription factor nuclear factor kappa-B (NFκB) is a key regulator of pro-inflammatory and pro-proliferative processes. Accordingly, uncontrolled NFκB activity may contribute to the development of severe diseases when the regulatory system is impaired. Since NFκB can be triggered by a huge variety of inflammatory, pro-and anti-apoptotic stimuli, its activation underlies a complex and tightly regulated signaling network that also includes multi-layered negative feedback mechanisms. Detailed understanding of this complex signaling network is mandatory to identify sensitive parameters that may serve as targets for therapeutic interventions. While many details about canonical and non-canonical NFκB activation have been investigated, less is known about cellular IκBα pools that may tune the cellular NFκB levels. IκBα has so far exclusively been described to exist in two different forms within the cell: stably bound to NFκB or, very transiently, as unbound protein. We created a detailed mathematical model to quantitatively capture and analyze the time-resolved network behavior. By iterative refinement with numerous biological experiments, we yielded a highly identifiable model with superior predictive power which led to the hypothesis of an NFκB-lacking IκBα complex that contains stabilizing IKK subunits. We provide evidence that other but canonical pathways exist that may affect the cellular IκBα status. This additional IκBα:IKKγ complex revealed may serve as storage for the inhibitor to antagonize undesired NFκB activation under physiological and pathophysiological conditions.
The transcription factors NF-κB and p53 are key regulators in the genotoxic stress response and are critical for tumor development. Although there is ample evidence for interactions between both networks, a comprehensive understanding of the crosstalk is lacking. Here, we developed a systematic approach to identify potential interactions between the pathways. We perturbed NF-κB signaling by inhibiting IKK2, a critical regulator of NF-κB activity, and monitored the altered response of p53 to genotoxic stress using single cell time lapse microscopy. Fitting subpopulation-specific computational p53 models to this time-resolved single cell data allowed to reproduce in a quantitative manner signaling dynamics and cellular heterogeneity for the unperturbed and perturbed conditions. The approach enabled us to untangle the integrated effects of IKK/ NF-κB perturbation on p53 dynamics and thereby derive potential interactions between both networks. Intriguingly, we find that a simultaneous perturbation of multiple processes is necessary to explain the observed changes in the p53 response. Specifically, we show interference with the activation and degradation of p53 as well as the degradation of Mdm2. Our results highlight the importance of the crosstalk and its potential implications in p53-dependent cellular functions.
Personalized medicine aims to tailor treatment to patients based on their individual genetic or molecular background. Especially in diseases with a large molecular heterogeneity, such as diffuse large B-cell lymphoma (DLBCL), personalized medicine has the potential to improve outcome and/or to reduce resistance towards treatment. However, integration of patient-specific information into a computational model is challenging and has not been achieved for DLBCL. Here, we developed a computational model describing signaling pathways and expression of critical germinal center markers. The model integrates the regulatory mechanism of the signaling and gene expression network and covers more than 50 components, many carrying genetic lesions common in DLBCL. Using clinical and genomic data of 164 primary DLBCL patients, we implemented mutations, structural variants and copy number alterations as perturbations in the model using the CoLoMoTo notebook. Leveraging patient-specific genotypes and simulation of the expression of marker genes in specific germinal center conditions allows us to predict the consequence of the modeled pathways for each patient. Finally, besides modeling how genetic perturbations alter physiological signaling, we also predicted for each patient model the effect of rational inhibitors, such as Ibrutinib, that are currently discussed as possible DLBCL treatments, showing patient-dependent variations in effectiveness and synergies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.