The hybrid MCL that we developed allows variable and continuous in vitro evaluation of mechanical circulatory support devices in TAH configuration and particularly their control algorithms in response to various cardiovascular conditions. The system has been built in a modular configuration to allow testing of different types of devices and thus provides a valuable test platform prior to animal experiments.
Thromboembolic complications are one of the major challenges faced by designers and researchers in development of artificial organs with blood-contacting devices such as heart valve prostheses, especially mechanical valves. Besides increasing the thrombogenic potential, these valves change the hydrodynamic performance of the heart. In this study, the flow through a trileaflet, mechanical heart valve prosthesis was modeled with transient computational fluid dynamics to analyze flow patterns causing thrombus formations on valves. The valve was simulated under conditions of a test rig (THIA II), which was specially designed to analyze different valves with respect to thrombosis. The main goal of this study was to mimic the exact conditions of the test rig to be able to compare numerical and experimental results. The boundary conditions were obtained from experimental data as leaflet kinematics and pressure profiles. One complete cycle of the valve was simulated. Numerical flow and pressure results were analyzed and compared with experimental results. Shear stress and shear rates were determined with respect to thrombogenic potential, especially in the pivot regions, which seem to be the main influence for activation and deposition of thrombocytes. Approximately 0.7% of the blood volume moving through the fluid domain of the valve was exposed to shear rates high enough to cause platelet activation. However, shear rates of up to 20,000 s⁻¹ occurred in pivot regions. The pressure differences between the simulation and experimental data were approximately 2.5% during systole and increased up to 25% during diastole. The presented method, however, can be used to gain more information about the flow through different heart valve prostheses and, thus, improve the development process.
A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH.
For any implantable device size and efficiency are critical properties. Thus, a linear motor for a Total Artificial Heart was optimized with focus on driver electronics and control strategies. Hardware requirements were defined from power supply and motor setup. Four full bridges were chosen for the power electronics. Shunt resistors were set up for current measurement. Unipolar and bipolar switching for power electronics control were compared regarding current ripple and power losses. Here, unipolar switching showed smaller current ripple and required less power to create the necessary motor forces. Based on calculations for minimal power losses Lorentz force was distributed to the actor's four coils. The distribution was determined as ratio of effective magnetic flux through each coil, which was captured by a force test rig. Static and dynamic measurements under physiological conditions analyzed interaction of control and hardware and all efficiencies were over 89%. In conclusion, the designed electronics, optimized control strategy and applied current distribution create the required motor force and perform optimal under physiological conditions. The developed driver electronics and control offer optimized size and efficiency for any implantable or portable device with multiple independent motor coils. Graphical Abstract ᅟ.
Artificial heart systems — the demand is huge, development is difficult: How applied medical technology is attempting to find new solutions. The role played by mechanical/hydraulic models is as important as innovative software simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.