Poplar root reaction wood showed characteristics different from those produced in bent stem. Besides providing biomechanical functions, a bent root ensures water uptake and transport in the deforming condition induced by tension and compression forces by two different strategies: an increase in xylem thickness in the compressed side, and lateral root formation in the tension side.
Mediterranean trout is a freshwater fish of particular interest with economic significance for fishery management, aquaculture and conservation biology. Unfortunately, native trout populations’ abundance is significantly threatened by anthropogenic disturbance. The introduction of commercial hatchery strains for recreation activities has compromised the genetic integrity status of native populations. This work assessed the fine-scale genetic structure of Mediterranean trout in the two main rivers of Molise region (Italy) to support conservation actions. In total, 288 specimens were caught in 28 different sites (14 per basins) and genotyped using the Affymetrix 57 K rainbow-trout-derived SNP array. Population differentiation was analyzed using pairwise weighted FST and overall F-statistic estimated by locus-by-locus analysis of molecular variance. Furthermore, an SNP data set was processed through principal coordinates analysis, discriminant analysis of principal components and admixture Bayesian clustering analysis. Firstly, our results demonstrated that rainbow trout SNP array can be successfully used for Mediterranean trout genotyping. In fact, despite an overwhelming number of loci that resulted as monomorphic in our populations, it must be emphasized that the resulted number of polymorphic loci (i.e., ~900 SNPs) has been sufficient to reveal a fine-scale genetic structure in the investigated populations, which is useful in supporting conservation and management actions. In particular, our findings allowed us to select candidate sites for the collection of adults, needed for the production of genetically pure juvenile trout, and sites to carry out the eradication of alien trout and successive re-introduction of native trout.
Mechanical forces induced by bending are able to trigger an asymmetrical response in Populus nigra L. woody taproots. This response includes the recruitment of new lateral roots on the convex side and the deposition of reaction wood (RW) on the opposite concave side. Since these responses seem to be induced by asymmetric activity and differentiation of cambium cells, we investigated, in the present work, how mechanical forces could influence the activation of specific phytohormone signaling pathways on the two sides of the vascular cambium. Thus, distinctive tissues were isolated from convex and concave sides of bent poplar root using cryosectioning. Successively, the isolated tissues, represented by the cambial zone, and the developing phloem and xylem, were analyzed using liquid chromatography coupled to tandem mass spectrometry to profile auxins, abscisic acid (ABA), cytokinins (CKs) and their metabolites. The auxin gradient on the concave side, with the IAA maximum localized in the cambium and decreasing level toward the developing phloem and xylem, suggests a pivotal role of IAA in the control of cambial growth rate, xylem differentiation and RW production. The IAA differences between the two bent root sides could be at the basis of the strictly unidirectional RW production. The higher levels of ABA and all CKs metabolites on the concave side support their involvement in RW production, whereby ABA could mediate the adaptation to the deforming conditions generated by bending, while CKs could act in synergy with IAA in controlling cell differentiation and meristem size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.