Purpose: Activity of histidine decarboxylase, the key enzyme in the synthesis of histamine, has been shown to be increased in several types of human tumors.We attempted to establish whether the possible involvement of histidine decarboxylase and histamine in colorectal carcinogenesis might be mediated by the activation of the cyclooxygenase-2 (COX-2) pathway. Experimental Design: Expression/activity of histidine decarboxylase, histamine content, and prostaglandin E 2 (PGE 2 ) production were analyzed in 33 colorectal cancer samples and in the HT29, Caco-2, and HCT116 colon cancer cell lines. The effects of histamine, celecoxib, and H 1 , H 2 , and H 4 receptor antagonists on COX-2 expression/activity, cell proliferation, and vascular endothelial growth factor (VEGF) production were assessed in the three colon cancer lines that showed different constitutive COX-2 expression. Results: We showed the up-regulation of histidine decarboxylase protein expression and activity in the tumor specimens when compared with normal colonic mucosa. Histidine decarboxylase activity and histamine content were also significantly higher in metastatic tumors than in nonmetastatic ones.These variables significantly correlated with tumor PGE 2 production.The administration of histamine increased COX-2 expression/activity, cell proliferation, and VEGF production in the COX-2-positive HT29 and Caco-2 cells. Treatment with either H 2 /H 4 receptor antagonists or celecoxib prevented these effects. Histamine had no effect on both the COX-2 pathway andVEGF production in the COX-2-negative HCT116 cells. Conclusions: Our data showed that histamine exerts both a proproliferative and a proangiogenic effect via H 2 /H 4 receptor activation. These effects are likely to be mediated by increasing COX-2-related PGE 2 production in COX-2-expressing colon cancer cells.
Cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) are key enzymes involved in arachidonic acid metabolism. Their products, prostaglandins and leukotrienes, are involved in colorectal tumor development. We aimed at evaluating whether combined blocking of the COX-2 and 5-LOX pathways might have additive antitumor effects in colorectal cancer. The expression/activity of COX-2 and 5-LOX were assessed in 24 human colorectal cancer specimens. The effects of the COX-2 inhibitor celecoxib and the 5-LOX inhibitor MK886 on prostaglandin E 2 and cysteinyl leukotriene production, tumor cell proliferation, cell apoptosis, and Bcl-2/Bax expression were evaluated in the Caco-2 and HT29 colon cancer cells. We also investigated the effect of the enzymatic inhibition on mitochondrial membrane depolarization, one of the most important mechanisms involved in ceramide-induced apoptosis. Up-regulation of the COX-2 and 5-LOX pathways was found in the tumor tissue in comparison with normal colon mucosa. Inhibition of either COX-2 or 5-LOX alone resulted in activation of the other pathway in colon cancer cells. Combined treatment with 10 Mmol/L celecoxib and MK886 could prevent this activation and had additive effects on inhibiting tumor cell proliferation, inducing cell apoptosis, decreasing Bcl-2 expression, increasing Bax expression, and determining mitochondrial depolarization in comparison with treatment with either inhibitor alone. The administration of the ceramide synthase inhibitor fumonisin B1 could prevent some of these antineoplastic effects. In conclusion, our study showed that inhibition of 5-LOX by MK886 could augment the antitumor activity of celecoxib in human colorectal cancer. [Mol Cancer Ther 2006;5(11):2716 -26]
Nitric oxide (NO) is a diatomic free radical molecule that has been implicated in tumour angiogenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the mechanism underlying the effect of NO on tumour spread remains largely unknown. Tumour lymphangiogenesis has recently received considerable attention and there is increasing evidence that it is relevant for metastasis to lymph nodes in HNSCC. Here, we study the correlation between inducible NOS synthase (iNOS) activity and lymphangiogenesis in a series of 60 HNSCCs and the possible involvement of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C. HNSCC presenting with lymph node metastasis had a significantly higher lymphatic vessel density in both the tumour mass and the peritumour area (p = 0.006 and p = 0.001, respectively). Similarly, tumours with lymph node metastasis showed greater lymphatic vessel area than tumours with no lymph node involvement (p = 0.001 for intratumour lymphatics and p < 0.001 for peritumour lymphatics). iNOS activity measured in specimens from the tumour periphery correlated strongly with both lymphatic vessel density and lymphatic vessel area (p = 0.01, rs = 0.45 and p < 0.001, rs = 0.725, respectively). Conversely, these correlations were not observed in specimens from the tumour core. In addition, VEGF-C mRNA expression was significantly elevated in tumours with high iNOS activity (p = 0.008, rs = 0.563), and VEGF-C expression correlated positively with the presence of lymph node metastases (p = 0.03). In vitro, in the A431 human squamous carcinoma cell line, exogenous and endogenous stimulation of the iNOS pathway led to up-regulation of VEGF-C, which was blocked by the NOS inhibitor L-NNA. Taken together, our results indicate that iNOS activity may promote lymphangiogenesis and spread to lymph nodes in HNSCC, with the possible involvement of VEGF-C.
Periodontitis represents a highly prevalent health problem, causing severe functional impairment, reduced quality of life and increased risk of systemic disorders, including respiratory, cardiovascular and osteoarticular diseases, diabetes and fertility problems. It is a typical example of a multifactorial disease, where a polymicrobial infection inducing chronic inflammation of periodontal tissues is favoured by environmental factors, life style and genetic background. Since periodontal pathogens can colonise poorly vascularised niches, antiseptics and antibiotics are typically associated with local treatments to manage the defects, with unstable outcomes especially in early-onset cases. Here, the results of a retrospective study are reported, evaluating the efficacy of a protocol (Periodontal Biological Laser-Assisted Therapy, Perioblast™) by which microbial profiling of periodontal pockets is used to determine the extent and duration of local neodymium-doped yttrium aluminium garnet (Nd:YAG) laser irradiation plus conventional treatment. The protocol was applied multicentrically on 2683 patients, and found to produce a significant and enduring improvement of all clinical and bacteriological parameters, even in aggressive cases. Microbiome sequencing of selected pockets revealed major population shifts after treatment, as well as strains potentially associated with periodontitis in the absence of known pathogens. This study, conducted for the first time on such a large series, clearly demonstrates long-term efficacy of microbiology-driven non-invasive treatment of periodontal disease.
SummaryPurpose. In this study the temporal texture differentiation associated with the bone formation properties, around loaded oral implants after Platelet Rich Plasma (PRP) employment, was investigated in Panoramic Radiographs. Conclusion. This study provides evidences that PRP application may favor bone formation around loaded dental implants that could modify the dental treatment planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.