Interleukin‐6 (IL‐6) is a multifunctional cytokine whose circulating levels are under physiological conditions below detection, but whose production is rapidly and strongly induced by several pathological and inflammatory stimuli. IL‐6 has been implicated in a number of cell functions connected to immunity and hematopoiesis. Recently, it has been proposed to act as a stimulator of osteoclast formation and activity, in particular following estrogen depletion. The purpose of this study was to gain additional insights into the role of IL‐6 during development, as well as in physiological and pathological conditions. We report here that IL‐6 deficient mice generated by gene targeting are viable and do not present any evident phenotypic abnormality. However, analysis of bone metabolism revealed a specific bone phenotype. IL‐6 deficient female mice have a normal amount of trabecular bone, but higher rates of bone turnover than control littermates. Estrogen deficiency induced by ovariectomy causes in wild type animals a significant loss of bone mass together with an increase in bone turnover rates. Strikingly, ovariectomy does not induce any change in either bone mass or bone remodeling rates in the IL‐6 deficient mice. These findings indicate that IL‐6 plays an important role in the local regulation of bone turnover and, at least in mice, appears to be essential for the bone loss caused by estrogen deficiency.
Interleukin-6 (IL-6) is overproduced in the joints of patients with rheumatoid arthritis (RA) and, based on its multiple stimulatory effects on cells of the immune system and on vascular endothelia, osteoclasts, and synovial fibroblasts, is believed to participate in the development and clinical manifestations of this disease. In this study we have analysed the effect of ablating cytokine production in two mouse models of arthritis: collagen-induced arthritis (CIA) in DBA/1J mice and the inflammatory polyarthritis of tumor necrosis factor α (TNF-α) transgenic mice. IL-6 was ablated by intercrossing an IL-6 null mutation into both arthritis-susceptible genetic backgrounds and disease development was monitored by measuring clinical, histological, and biochemical parameters. Two opposite responses were observed; while arthritis in TNF-α transgenic mice was not affected by inactivation of the IL-6 gene, DBA/1J, IL-6−/− mice were completely protected from CIA, accompanied by a reduced antibody response to type II collagen and the absence of inflammatory cells and tissue damage in knee joints. These results are discussed in the light of the present knowledge of cytokine networks in chronic inflammatory disorders and suggest that IL-6 receptor antagonists might be beneficial for the treatment of RA.
Stunted growth is a major complication of chronic inflammation and recurrent infections in children. Systemic juvenile rheumatoid arthritis is a chronic inflammatory disorder characterized by markedly elevated circulating levels of IL-6 and stunted growth. In this study we found that NSE/hIL-6 transgenic mouse lines expressing high levels of circulating IL-6 since early after birth presented a reduced growth rate that led to mice 50-70% the size of nontransgenic littermates. Administration of a monoclonal antibody to the murine IL-6 receptor partially reverted the growth defect. In NSE/hIL-6 transgenic mice, circulating IGF-I levels were significantly lower than those of nontransgenic littermates; on the contrary, the distribution of growth hormone pituitary cells, as well as circulating growth hormone levels, were normal. Treatment of nontransgenic mice of the same strain with IL-6 resulted in a significant decrease in IGF-I levels. Moreover, in patients with systemic juvenile rheumatoid arthritis, circulating IL-6 levels were negatively correlated with IGF-I levels. Our findings suggest that IL-6-mediated decrease in IGF-I production represents a major mechanism by which chronic inflammation affects growth. ( J. Clin. Invest. 1997. 99:643-650.) Key words: interleukin 6 • insulinlike growth factor-I • growth disorders • juvenile rheumatoid arthritis
C/EBP beta is considered a key element of interleukin‐6 (IL‐6) signalling as well as an important transcriptional regulator of the IL‐6 gene itself. We describe here how mice lacking C/EBP beta develop a pathology similar to mice overexpressing IL‐6 and nearly identical to multicentric Castleman's disease in human patients, with marked splenomegaly, peripheral lymphadenopathy and enhanced haemopoiesis. Humoral, innate and cellular immunity are also profoundly distorted, as shown by the defective activation of splenic macrophages, the strong impairement of IL‐12 production, the increased susceptibility to Candida albicans infection and the altered T‐helper function. Our data show that C/EBP beta is crucial for the correct functional regulation and homeostatic control of haemopoietic and lymphoid compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.