BackgroundNeuroendocrine lung cancer (NELC) represents 25% of all lung cancer cases and large patient collectives exist as formalin-fixed, paraffin-embedded (FFPE) tissue only. FFPE is controversially discussed as source for molecular biological analyses and reference genes for NELC are poorly establishes.Material and methodsForty-three representative FFPE-specimens were used for mRNA expression analysis using the digital nCounter technology (NanoString). Based on recent literature, a total of 91 mRNA targets were investigated as potential tumor markers or reference genes. The geNorm, NormFinder algorithms and coefficient of correlation were used to identify the most stable reference genes. Statistical analysis was performed by using the R programming environment (version 3.1.1)ResultsRNA integrity (RIN) ranged from 1.8 to 2.6 and concentrations from 34 to 2,109 ng/μl. However, the nCounter technology gave evaluable results for all samples tested. ACTB, CDKN1B, GAPDH, GRB2, RHOA and SDCBP were identified as constantly expressed genes with high stability (M-)values according to geNorm, NormFinder and coefficients of correlation.ConclusionFFPE-derived mRNA is suitable for molecular biological investigations via the nCounter technology, although it is highly degraded. ACTB, CDKN1B, GAPDH, GRB2, RHOA and SDCBP are potent reference genes in neuroendocrine tumors of the lung.
Platin-containing regimes are currently considered as state-of-the-art therapies in malignant pleural mesotheliomas (MPM) but show dissatisfying response rates ranging from 6 to 16% only. Still, the reasons for the rather poor efficacy remain largely unknown. A clear stratification of patients based on new biomarkers seems to be a promising approach to enhance clinical management, which would be a long-needed improvement for MPM patients but does not seem likely soon unless new biomarkers can be validated. Twenty-four formalin-fixed, paraffin-embedded (FFPE) tumour specimens were subjected to a miRNA expression screening of 800 important miRNAs using digital quantification via the nCounter technique (NanoString). We defined a small subset of miRNAs regulating the key enzymes involved in the repair of platin-associated DNA damage. Particularly, the TP53 pathway network for DNA damage recognition as well as genes related to the term "BRCAness" are the main miRNA targets within this context. The TP53 pathway network for DNA damage recognition as well as genes related to the term "BRCAness" are the main players for risk stratification in patients suffering from this severe disease. Taking the specific molecular profile of the tumour into account can help to enhance the clinical management prospectively and to smooth the way to better response prediction.
Background: Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and biologically highly aggressive tumour leading to a dismal prognosis. Multimodality therapy consisting of platinum-based chemotherapy is the treatment of choice. The reasons for the rather poor efficacy of platinum compounds remain largely unknown.Material and Methods: For this exploratory mRNA study, 24 FFPE tumour specimens were screened by digital gene expression analysis. Based on data from preliminary experiments and recent literature, a total of 366 mRNAs were investigated using a Custom CodeSet from NanoString. All statistical analyses were calculated with the R i386 statistical programming environment.Results: CDC25A and PARP1 gene expression were correlated with lymph node spread, BRCA1 and TP73 expression levels with higher IMIG stage. NTHL1 and XRCC3 expression was associated with TNM stage. CHECK1 as well as XRCC2 expression levels were correlated with tumour progression in the overall cohort of patients. CDKN2A and MLH1 gene expression influenced overall survival in this collective. In the adjuvant treated cohort only, CDKN2A, CHEK1 as well as ERCC1 were significantly associated with overall survival. Furthermore, TP73 expression was associated with progression in this subgroup.Conclusion: DNA-damage response plays a crucial role in response to platin-based chemotherapeutic regimes. In particular, CHEK1, XRCC2 and TP73 are strongly associated with tumour progression. ERCC1, MLH1, CDKN2A and most promising CHEK1 are prognostic markers for OS in MPM. TP73, CDKN2A, CHEK1 and ERCC1 seem to be also predictive markers in adjuvant treated MPMs. After a prospective validation, these markers may improve clinical and pathological practice, finally leading to a patients' benefit by an enhanced clinical management.
BackgroundMalignant pleural mesothelioma (MPM) is a rare tumor linked to a dismal prognosis. Even the most effective chemotherapeutical regime of pemetrexed combined with cisplatin leads to a remission-rate of only about 40%. The reasons for the rather poor efficacy remain largely unknown.ResultsPhenotypes were significantly associated with progression (p=0.0279) and remission (p=0.0262). Cox-regression revealed significant associations between SLC19A1/TYMS-ratio (p=0.0076) as well as FPGS/TYMS-ratio (p=0.0026) and OS. For differentiation by risk-groups, COXPH identified a strong correlation (p=0.0008).Methods56 MPM specimens from patients treated with pemetrexed were used for qPCR analysis. Phenotypes and risk groups were defined by their expression levels of members of the folic acid metabolism and correlated to survival and objective response.ConclusionOur results indicate that the balance between folic acid uptake, activation and metabolism plays a crucial role in response to pemetrexed-based chemotherapy and the prognosis of MPM patients. Implementing this marker profile in MPM stratification may help to individualize MPM-therapy more efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.