The aim of the present review is underline the association between cardiac diseases and anxiety and depression. In the first part of the article, there is a description of anxiety and depression from the definitions of DSM-IV TR. In the second part, the authors present the available tests and questionnaires to assess depression and anxiety in patients with cardiovascular disease. In the last part of the review different types of interventions are reported and compared; available interventions are pharmacological or psychological treatments.
Lesion of the serotoninergic system in neonate rats is an ideal model for assessing the activity of chemical substances capable of affecting neuronal plasticity and regeneration (Jonsson et al., Dev Brain Res 16: 171-180, 1984). Treatment of newborn rats within 6 hr from birth with the selective neurotoxin 5,7-dihydroxytryptamine causes degeneration of the most distal serotoninergic axons. In our experimental conditions we have observed that after such neurotoxic treatment there is spinal cord denervation, which is particularly remarkable in the lumbar segment. This degenerative event is followed by gradual regeneration of the lesioned axons, with good reinnervation of the entire cord within 8 weeks. The degeneration-regeneration process is correlated with a transient hyperinnervation of the pons-medulla and hypothalamus by the short collaterals (pruning effect), as evidenced by increased serotonin content. Perinatal morphine exposure markedly impairs serotonin regeneration in the spinal cord. In addition, opiate treated rats are more susceptible to lesions, as shown by the neurotoxin induced denervation of the cortex, pons-medulla, and hypothalamus, which does not occur in lesioned controls. Therefore, our observations suggest that perinatal exposure to morphine affects the plasticity and regeneration of the developing serotoninergic system by increasing its susceptibility to neurotoxic lesions and reducing its regenerative capacity.
It has been reported that perinatal exposure to opiates affects mRNA synthesis, body growth and brain development in mammals, including humans. We have observed that morphine administration in drinking water during the perinatal period alters peptide development in the striatum of the rat. There is a marked increase in substance P and met-enkephalin content, the latter is maintained even at 30 days postnatally. The transient increase or earlier maturation of substance P content is correlated by a more precocious axon terminal organization as revealed by immunocytochemical staining. The increased metenkephalin content is correlated by a higher abundance of preproenkephalin A mRNA and this correlation is particularly evident at 15 days postnatally. At earlier times both northern blotting and in situ hybridization techniques fail to show any significant difference between control and morphine exposed rats, likely because the peptide content is not very different in the two groups or at least the gap is not as wide as at later times.
Diabetes-induced embryo malformations and growth retardation are correlated with a variety of biochemical changes including oxidative stress. In this study, we show that the morphological alterations are correlated with progressive and selective changes of mRNA expression in specific neurotrophic factors. At embryological stage E-17, diabetes affected both embryo growth and NGF mRNA expression, which was reduced by as much as 90 and 56% in target tissues of sensory system such as tongue and intestine, respectively. The reduction in retina and heart was around 50%. Conversely, the mRNA expression of low-affinity neurotrophin receptor p75 was increased. At birth, BDNF mRNA expression was affected with a significant generalized reduction,while in vibrissae we observed a reduction of BDNF and p75 mRNAs and an increase of NGF. At postnatal day 14, pups from diabetic mothers showed reduced muscle levels of IGF-I, while we observed a partial impairment of substance P axonal transport at postnatal day 28. Treatment of diabetic mothers with silybin, a flavonoid with antioxidant properties, prevented most of the changes in neurotrophic factor expression and substance P axonal transport with no effects on hyperglycemia and embryo growth retardation. These results indicate that oxidative stress may influence neurotrophic factor synthesis in target territories during development. In addition, these data suggest that nervous system abnormalities observed in diabetic embryopathy may also derive by insufficient neurotrophic factor biosynthesis involving sequentially NGF in the embryo and BDNF and IGF-I in the early postnatal days. Insulin treatment of diabetic mothers normalized hyperglycemia and body growth, with consequent regular embryonic and postnatal development.
In this report it is shown how glycosaminoglycans and insulin-like growth factor-I (IGF-I) promote muscle reinnervation and prevent motor neuron death in experimental models of motor neuron disease. Such effect appears to be mediated by insulin-like growth factor-1. The glycosaminoglycan moiety of proteoglycans is a constituent of the basal lamina active on nerve regeneration by means of the interaction with laminin and with several growth factors. We have previously shown that supplementation by means of subcutaneous injections of glycosaminoglycans affects neuronal degeneration and regeneration. In this study we report that following neonatal lesion of the rat sciatic nerve, glycosaminoglycan treatment promoted extensor digitorum longus muscle reinnervation with consequent improvement of muscle morphology. In saline-treated rats, reinnervation was only partial and there was a marked muscle fibre atrophy, whereas, glycosaminoglycan treatment of lesioned rats increased IGF-I mRNA and protein in the reinnervated muscle, and IGF-I and insulin-like growth factor binding protein-3 plasma levels. Similarly, treatment of lesioned rats with IGF-I promoted muscle reinnervation, and prevented muscle fibre atrophy, higher levels of IGF-I in the reinnervated muscle, of IGF-I, and insulin-like growth factor binding proteins in plasma. In the wobbler mouse IGF-I and glycosaminoglycans alone promote only a partial motor neuron survival and the preservation of forelimb function decays after 3 weeks of treatment. However when glycosaminoglycans and insulin-like growth factor are administered together the motor neuron disease in the wobbler mouse is halted and there is no more loss of motor neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.