Background:Monitoring for acute allograft rejection improves outcomes after cardiac transplantation. Endomyocardial biopsy is the gold standard test defining rejection, but carries risk and has limitations. Cardiac magnetic resonance T2 mapping may be able to predict rejection in adults, but has not been studied in children. Our aim was to evaluate T2 mapping in identifying paediatric cardiac transplant patients with acute rejection.Methods:Eleven paediatric transplant patients presenting 18 times were prospectively enrolled for non-contrast cardiac magnetic resonance at 1.5 T followed by endomyocardial biopsy. Imaging included volumetry, flow, and T2 mapping. Regions of interest were manually selected on the T2 maps using the middle-third technique in the left ventricular septal and lateral wall in a short-axis and four-chamber slice. Mean and maximum T2 values were compared with Student’s t-tests analysis.Results:Five cases of acute rejection were identified in three patients, including two cases of grade 2R on biopsy and three cases of negative biopsy treated for clinical symptoms attributed to rejection (new arrhythmia, decreased exercise capacity). A monotonic trend between increasing T2 values and higher biopsy grades was observed: grade 0R T2 53.4 ± 3 ms, grade 1R T2 54.5 ms ± 3 ms, grade 2R T2 61.3 ± 1 ms. The five rejection cases had significantly higher mean T2 values compared to cases without rejection (58.3 ± 4 ms versus 53 ± 2 ms, p = 0.001).Conclusions:Cardiac magnetic resonance with quantitative T2 mapping may offer a non-invasive method for screening paediatric cardiac transplant patients for acute allograft rejection. More data are needed to understand the relationship between T2 and rejection in children.
Purpose of Review
Cardiac magnetic resonance imaging provides radiation-free, 3-dimensional soft tissue visualization with adjunct hemodynamic data, making it a promising candidate for image-guided transcatheter interventions. This review focuses on the benefits and background of real-time magnetic resonance imaging (MRI)-guided cardiac catheterization, guidance on starting a clinical program, and recent research developments.
Recent Findings
Interventional cardiac magnetic resonance (iCMR) has an established track record with the first entirely MRI-guided cardiac catheterization for congenital heart disease reported nearly 20 years ago. Since then, many centers have embarked upon clinical iCMR programs primarily performing diagnostic MRI-guided cardiac catheterization. There have also been limited reports of successful real-time MRI-guided transcatheter interventions. Growing experience in performing cardiac catheterization in the magnetic resonance environment has facilitated practical workflows appropriate for efficiency-focused cardiac catheterization laboratories. Most exciting developments in imaging technology, MRI-compatible equipment and MRI-guided novel transcatheter interventions have been limited to preclinical research. Many of these research developments are ready for clinical translation.
Summary
With increasing iCMR clinical experience and translation of preclinical research innovations, the time to make the leap to radiation-free procedures is now.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.