The compositional and quality characteristics of two wheat varieties Triticum dicoccum (Triticum dicoccum var. dicoccum, Triticum dicoccum var. rufum) produced in the Republic of Azerbaijan have been tested and are relatively useful in assessing their applicability to bread production. The wheat species studied, Triticum dicoccum, were found to have a higher protein and cell content, as well as essential proteins of lysine, phenylalanine, leucine and isoleucine, methionine and valine, relative to Gorbustan wheat varieties. The chromatographic method was used to determine the carbohydrate composition of the Triticum dicoccum grain. The following redistribution of low molecular weight carbohydrate fractions is noted: the maltose content is higher, and galactose, glucose and fructose are much lower than those of the modern wheat variety Gorbustan. Such a distribution of carbohydrates can reduce the formation of toxic products when baking bread. In addition, the wheat grain Triticum dicoccum is characterized by a higher content of sterols, in particular β-sitosterol. The antioxidant activity expressed as percentage inhibition of DPPG free radicals in the Triticum dicoccum grain is twice as high as this indicator for wheat of the commercial variety Gorbustan. By scanning electron microscopy, it has been established that the microstructure of the grain surface and the cross section has varietal characteristics. Grain Triticum dicoccum var. rufum has a thicker shell, tighter and tighter, unlike the grain of Triticum dicoccum var. dicoccum. With all the benefits of the wheat grain Triticum dicoccum, its technological properties were even worse. But the use of technological methods to boost gluten will ensure the production of high-quality healthy bread from old wheat grain.
The low-temperature fractionation of fruit Malus domestica Borkh (Common Antonovka) has been performed. We obtained by fractionation the biologically active products that are the dehydrated concentrate of juice and the powder of pomace fibers. Use of low temperature minimizes biological value losses during processing. These fractions of fruit Malus domestica Borkh (Common Antonovka) are experimentally studied. It is found that the fractions have high antioxidant activity and include bioflavonoids and organic and phenol carboxylic acids. Analysis of chromatograms showed availability of the identical compounds in the products of low-temperature fractionation. Sodium and potassium are part of the cells of biological systems as highly mobile ionic forms. Therefore, these elements prevail in the concentrated juice. Iron, manganese, copper, and zinc are biogenic trace elements or components of enzyme systems and are evenly distributed as in plant cell walls as well in protoplasm. It follows from the results of the study of the mineral composition that the products of the low-temperature fractioning can be used for a functional food as a result of its high content of magnesium and iron. The low-temperature fractionation of fruit Malus domestica Borkh (Common Antonovka) has antimicrobial activity against the standard strains of spoilage:
A promising way to increase the use of buckwheat is the wider introduction of technologies for its processing, including grinding of non-hulled grain. It requires the search for new plant materials with more suitable characteristics. In this work, the possibilities to use the grain of a new artificial buckwheat species Fagopyrum hybridum for flour production are studied in comparison with two cultivated species F. tataricum and F. esculentum. Some chemical characteristics of F. hybridum flour were evaluated. According to the size of the kernel fragments in different modes of milling within each species the significant differences were identified within F. esculentum and F. hybridum (p <0.001 and p <0.05, respectively); there were no significant differences within F. tataricum (p >0.1). Fragments of the seed hulls of F. tataricum and F. hybridum compared to ones of F. esculentum were distinguished by the absence of pronounced acute angles. For the cultivated species, amino acid compositions of grain protein of the studied samples manifest no strong deviations from earlier published results. The new species F. hybridum has the amino acid composition similar to ones of the both cultivated species with slight superiority in the content of all essential amino acids. So, the content of Cysteine, Tryptophan, Arginine, Lysine, Methionine, Leucine + Isoleucine, Threonine, Histidine and Valine in seeds of F. hybridum was 5.2, 15.0, 25.8, 30.2, 31.2, 36.0, 38.4, 41.1 and 46.2% higher compared to F. tataricum and 11.1, 43.7, 39.2, 3.7, 31.2, 15.2, 14.8, 20.0, 18.9% higher compared to F. esculentum. Using DPPH it was assessed the antioxidant activity (AOA) of whole grain flour of three buckwheat species and decreasing of the AOA during heating up to 100 °C. After water extraction the AOA was maximal for F. tataricum flour; F. hybridum and F. esculentum manifested similar values with the same decline dynamics during heating. After ethanol extraction the flour of F. hybridum shown higher AOA compared to both cultivated species before temperature treatment (1.3 times) as well as after heating to 100 °C (1.2 times). The results of the analysis of the fractional composition of flour from the whole grain of the three buckwheats shown the fragments of the seed hulls of F. tataricum and F. hybridum compared to ones of F. esculentum were characterized by the absence of pronounced acute angles. Additional experiments are needed to optimize the technology of whole-grain buckwheat flour. But the grain of F. tataricum and F. hybridum looks like more suitable for these purposes than the non-hulled grain of F. esculentum.
Biochemical parameters alteration of Fagopyrum esculentum Moench grain in process of germination was studied. It was found that during germination of Fagopyrum esculentum Moench grain within 24 hours the content of ascorbic acid, thiamine, nicotinic acids, pantothenic acids and routine was increased. The peptide composition of Fagopyrum esculentum Moench grain was studied by gel electrophoresis. The most significant alteration of reserve globulins structure are observed during germination phase from 20 till 24 hours. New low-molecular polypeptides appear during above mentioned period, that indicates embryonic awakening and synthesis of new protein compounds, mainly hydrolases. The process of proteolysis during germination of Fagopyrum esculentum Moench grain promotes a content increase of soluble fractions and sum of albumins and globulins. There is a significant decrease of insoluble protein residue during germination phase change. Chromatographic method was used to determine the change of carbohydrate composition of Fagopyrum esculentum Moench grains during germination. It was established that the content of total carbohydrates amount in grain extracts increases. Electron scanning microscopy revealed that after 12 hours germination of Fagopyrum esculentum Moench grain, swelling of starch grains and minor damage of their packaging in endosperm are observed. After 24 hours, endosperm of germinated grain significantly changed microstructure: starch grains and components of protein matrix had a vague outline, grain disintegration was observed. Evaluation of antioxidant activity of alcohol extract from Fagopyrum esculentum Moench grain germinated during 24 hours showed that percentage of DPPG free radicals inhibition increases with process prolongation. Thus, Fagopyrum esculentum Moench grain germinated within 24 hours is characterized by a high content of biologically active substances and can be used in food technologies for functional products development.
A grain concentrate was developed for use in bread baking based on whole-ground fermented wheat grain, to enhance that the beneficial properties have fermented wholegrain buckwheat grains in an amount of 20% by weight of the fermented wheat. For the fermentation of grain used dry complex enzyme preparation comprising cellulose, β-glucanase and xylanase (producing Penicillin canescens), dissolved in a buffer based on succinic acid. Under the action of the drug, the micro structure surface of grain was changed. It is established that the character of the change in surface micro structure of wheat and buckwheat grain is the same. The results of the study of the content of vitamin E, flavonoids and antioxidant activity in wheat grains, buckwheat and grain concentrate are obtained by different technologies. The results show that grain concentrates from wheat grain with the addition of 20% buckwheat grains prepared using a solution of enzyme preparation of cellulolytic action in a buffer, based on succinic acid has a high antioxidant activity. As a biological model for studying changes oxidant-antioxidant status of the organism under stress when included in a diet designed grain concentrate, used pigs, that are under stress, caused by weaning them from sows and transportation. Investigated the following parameters oxidant-antioxidant status of the organism pigs: the level of malondialdehyde, ceruloplasmin, vitamins A, E and C in the blood of animals. It is concluded that, to improve the oxidative status of the piglets after weaning period recommended addition of concentrate fodder ration of grain wheat and buckwheat prepared using a solution of an enzyme preparation buffered cellulolytic action on the basis of succinic acid. The developed grain concentrate can be used for making the manufacture of cereal products, including grain bread included in the diet of people who live in conditions of oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.