SUMMARY
Studies of the model organism Caenorhabditis elegans have almost exclusively utilized growth on a bacterial diet. Such culturing presents a challenge to automation of experimentation and introduces bacterial metabolism as a secondary concern in drug and environmental toxicology studies. Axenic cultivation of C. elegans can avoid these problems, yet past work suggests that axenic growth is unhealthy for C. elegans. Here we employ a chemically defined liquid medium to culture C. elegans and find development slows, fecundity declines, lifespan increases, lipid and protein stores decrease, and gene expression changes relative to that on a bacterial diet. These changes do not appear to be random pathologies associated with malnutrition, as there are no developmental delays associated with starvation, such as L1 or dauer diapause. Additionally, development and reproductive period are fixed percentages of lifespan regardless of diet,suggesting that these alterations are adaptive. We propose that C. elegans can exist as a healthy animal with at least two distinct adult life histories. One life history maximizes the intrinsic rate of population increase, the other maximizes the efficiency of exploitation of the carrying capacity of the environment. Microarray analysis reveals increased transcript levels of daf-16 and downstream targets and past experiments demonstrate that DAF-16 (FOXO) acting on downstream targets can influence all of the phenotypes we see altered in maintenance medium. Thus, life history alteration in response to diet may be modulated by DAF-16. Our observations introduce a powerful system for automation of experimentation on healthy C. elegans and for systematic analysis of the profound impact of diet on animal physiology.
Background: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.