The hydrophilicity, hydrophobicity, and sliding behavior of water droplets on nanoasperities of controlled dimensions were investigated experimentally. We show that the "hemi-wicking" theory for hydrophilic SiO(2) samples successfully predicts the experimental advancing angles and that the same patterns, after silanization, become superhydrophobic in agreement with the Cassie-Baxter and Wenzel theories. Our model topographies have the same dimensional scale of some naturally occurring structures that exhibit similar wetting properties. Our results confirm that a forest of hydrophilic/hydrophobic slender pillars is the most effective superwettable/water-repellent configuration. It is shown that the shape and curvature of the edges of the asperities play an important role in determining the advancing angles.
Chemokines and adhesion molecules are involved in early events of atherogenesis. In the present study, we investigated the effects of the uremic milieu on the expression of monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), soluble vascular adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1) and their relationship to cardiovascular status. Plasma samples were obtained from patients in different stages of chronic kidney disease (CKD). Cardiovascular status was evaluated by intima-media thickness and endothelial dysfunction by flow mediation dilatation and proteinuria. In vitro studies were performed using human umbilical endothelial cells exposed to uremic plasma or plasma from healthy subjects. MCP-1, IL-8, sVCAM-1 and sICAM-1 levels in plasma and in supernatant were analyzed by enzyme-linked immunosorbent assay. The population consisted of 73 (mean age 57 years; 48% males) CKD patients with glomerular filtration rate (GFR) of 37 ± 2 ml/min. MCP-1 and sVCAM-1 plasma levels were negatively correlated with GFR (ρ = –0.40, p < 0.0005 and ρ = –0.42, p < 0.0005, respectively). Fibrinogen was positively correlated with MCP-1, sICAM-1 and sVCAM-1 (ρ = 0.33, p < 0.005, ρ = 0.32, p < 0.05 and ρ = 0.25, p < 0.05, respectively) and ultra-high-sensitivity C-reactive protein was positively correlated with sICAM-1 (ρ = 0.25, p < 0.0005). Plasma IL-8 had a significant positive correlation with proteinuria (ρ = 0.31, p < 0.01). There was a time- and CKD-stage-dependent MCP-1, IL-8 and sVCAM-1 endothelial expression (p < 0.05). In summary, plasma levels of markers of endothelial cell activation (MCP-1 and sVCAM-1) are increased in more advanced CKD. Exposure of endothelial cells to uremic plasma results in a time- and CKD-stage-dependent increased expression of MCP-1, IL-8 and sVCAM-1, suggesting a link between vascular activation, systemic inflammation and uremic toxicity. Future studies are necessary to investigate whether these biomarkers add predictive value in comparison to the previously described ones. Also, endothelial response to uremic toxicity should be viewed as a potential target for intervention in order to reduce morbidity and mortality in CKD-related cardiovascular disease.
A biodegradable substrate with a regular array of nanopillars fabricated by electron-beam lithography and hot embossing is used to address the mechanisms of nanotopographical control of cell behavior. Two different cell lines cultured on the nanopillars show striking differences in cell coverage. These changes are topography- and cell-dependent, and are not mediated by air bubbles trapped on the nanopattern. For the first time, a strong cell-selective effect of the same nanotopography has been clearly demonstrated on a large area; while fibroblast proliferation is inhibited, endothelial cell spreading is visibly enhanced. The reduced fibroblast proliferation indicates that a reduction of available surface area induced by nanotopography might be the main factor affecting cell growth on nanopatterns. The results presented herein pave the way towards the development of permanent vascular replacements, where non-adhesive, inert, surfaces will induce rapid in situ endothelialization to reduce thrombosis and occlusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.