Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI 3 ). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI 3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI 3 (unlike MAPbBr 3 ) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material's relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity's hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI 3 , we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material's noncentrosymmetry. We note that the material's ferroelectric nature, can, but need not be important in a PV cell at room temperature.halide perovskites | photovoltaics | semiconductors | ferroelectricity | pyroelectricity N ew optoelectronic materials are of interest for producing solar cells with higher power and voltage efficiencies, lower costs, and improved long-term reliability. A very recent entry is the family of halide perovskites (HaPs), in particular those based on methylammonium (MA) lead iodide (MAPbI 3 ), MAPbBr 3 , and its inorganic analog CsPbBr 3 . Devices based on these perform remarkably well as solar cells (1, 2), as well as in other optoelectronic applications, such as LEDs and electromagnetic radiation detectors (3-5). Understanding possible unique characteristics of HaPs may show the way to other materials with similar key features.The ABX 3 (X = I, Br, Cl) HaP semiconductors (SCs), that is, with perovskite or perovskite-like structures, reach, via a steep absorption edge, a high optical absorption coefficient (∼10 5 cm −1 ) (6, 7), long charge carrier lifetimes (∼0.1-1 μs) (8), and reasonable carrier mobilities (less than or equal to ∼100 cm 2 ·V −1 ·s −1 ) (9), and have a low exciton binding energy (10). With these characteristics, the thickness of the optical absorber layer can be ≤0.5 μm, which allows the charge carriers (separated electrons and holes) to diffuse/d...
Young's moduli of selected amino acid molecular crystals were studied both experimentally and computationally using nanoindentation and dispersion-corrected density functional theory. The Young modulus is found to be strongly facet-dependent, with some facets exhibiting exceptionally high values (as large as 44 GPa). The magnitude of Young's modulus is strongly correlated with the relative orientation between the underlying hydrogen-bonding network and the measured facet. Furthermore, we show computationally that the Young modulus can be as large as 70-90 GPa if facets perpendicular to the primary direction of the hydrogen-bonding network can be stabilized. This value is remarkably high for a molecular solid and suggests the design of hydrogen-bond networks as a route for rational design of ultra-stiff molecular solids.
Doping is a primary tool for the modification of the properties of materials. Occlusion of guest molecules in crystals generally reduces their symmetry by the creation of polar domains, which engender polarization and pyroelectricity in the doped crystals. Here we describe a molecular-level determination of the structure of such polar domains, as created by low dopant concentrations (<0.5%). The approach comprises crystal engineering and pyroelectric measurements, together with dispersion-corrected density functional theory and classical molecular dynamics calculations of the doped crystals, using neutron diffraction data of the host at different temperatures. This approach is illustrated using centrosymmetric α-glycine crystals doped with minute amounts of different L-amino acids. The experimentally determined pyroelectric coefficients are explained by the structure and polarization calculations, thus providing strong support for the local and global understanding of how different dopants influence the properties of molecular crystals.
To experimentally (dis)prove ferroelectric effects on the properties of lead-halide perovskites and of solar cells, based on them, we used second-harmonic-generation spectroscopy and the periodic temperature change (Chynoweth) technique to detect the polar nature of methylammonium lead bromide (MAPbBr3). We find that MAPbBr3 is probably centrosymmetric and definitely non-polar; thus, it cannot be ferroelectric. Whenever pyroelectric-like signals were detected, they could be shown to be due to trapped charges, likely at the interface between the metal electrode and the MAPbBr3 semiconductor. These results indicate that the ferroelectric effects do not affect steady-state performance of MAPbBr3 solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.