Chiral molecules are shown to induce circular dichroism (CD) at surface plasmon resonances of gold nanostructures when in proximity to the metal surface without direct bonding to the metal. By changing the molecule-Au separation, we were able to learn about the mechanism of plasmonic CD induction for such nanostructures. It was found that even two monolayers of chiral molecules can induce observable plasmonic CD, while without the presence of the plasmonic nanostructures their own CD signal is unmeasurable. Hence, plasmonic arrays could offer a route to enhanced sensitivity for chirality detection.
Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI 3 ). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI 3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI 3 (unlike MAPbBr 3 ) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material's relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity's hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI 3 , we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material's noncentrosymmetry. We note that the material's ferroelectric nature, can, but need not be important in a PV cell at room temperature.halide perovskites | photovoltaics | semiconductors | ferroelectricity | pyroelectricity N ew optoelectronic materials are of interest for producing solar cells with higher power and voltage efficiencies, lower costs, and improved long-term reliability. A very recent entry is the family of halide perovskites (HaPs), in particular those based on methylammonium (MA) lead iodide (MAPbI 3 ), MAPbBr 3 , and its inorganic analog CsPbBr 3 . Devices based on these perform remarkably well as solar cells (1, 2), as well as in other optoelectronic applications, such as LEDs and electromagnetic radiation detectors (3-5). Understanding possible unique characteristics of HaPs may show the way to other materials with similar key features.The ABX 3 (X = I, Br, Cl) HaP semiconductors (SCs), that is, with perovskite or perovskite-like structures, reach, via a steep absorption edge, a high optical absorption coefficient (∼10 5 cm −1 ) (6, 7), long charge carrier lifetimes (∼0.1-1 μs) (8), and reasonable carrier mobilities (less than or equal to ∼100 cm 2 ·V −1 ·s −1 ) (9), and have a low exciton binding energy (10). With these characteristics, the thickness of the optical absorber layer can be ≤0.5 μm, which allows the charge carriers (separated electrons and holes) to diffuse/d...
Chiroptical effects are routinely observed in three dimensional objects lacking mirror symmetry or quasi-two-dimensional thin films lacking in-plane mirror symmetry. Here we show that symmetric plasmonic planar arrays of circular nanoholes produced strong chiroptical responses at visible wavelengths on tilting them with respect to the incident light beam due to the collective asymmetric nature of their surface plasmon excitations. This extrinsic chiroptical effect can be stronger than the local chiroptical response in arrays of intrinsically chiral nanoholes and may be useful for chiral sensing and negative refraction.
The optical and electronic properties of suspensions of inorganic fullerene-like nanoparticles of MoS2 are studied through light absorption and zeta-potential measurements and compared to those of the corresponding microscopic platelets. The total extinction measurements show that, in addition to excitonic peaks and the indirect band gap transition, a new peak is observed at 700-800 nm. This spectral peak has not been reported previously for MoS2. Comparison of the total extinction and decoupled absorption spectrum indicates that this peak largely originates from scattering. Furthermore, the dependence of this peak on nanoparticle size, shape, and surface charge, as well as solvent refractive index, suggests that this transition arises from a plasmon resonance.
We demonstrate the formation of uniform and oriented metal–organic frameworks using a combination of anion effects and surface chemistry. Subtle but significant morphological changes result from the nature of the coordinative counteranion of the following metal salts: NiX 2 with X = Br – , Cl – , NO 3 – , and OAc – . Crystals could be obtained in solution or by template surface growth. The latter results in truncated crystals that resemble a half structure of the solution-grown ones. The oriented surface-bound metal–organic frameworks (sMOFs) are obtained via a one-step solvothermal approach rather than in a layer-by-layer approach. The MOFs are grown on Si/SiOx substrates modified with an organic monolayer or on glass substrates covered with a transparent conductive oxide (TCO). Regardless of the different morphologies, the crystallographic packing is nearly identical and is not affected by the type of anion or by solution versus the surface chemistry. A propeller-type arrangement of the nonchiral ligands around the metal center affords a chiral structure with two geometrically different helical channels in a 2:1 ratio with the same handedness. To demonstrate the accessibility and porosity of the macroscopically oriented channels, a chromophore (resorufin sodium salt) was successfully embedded into the channels of the crystals by diffusion from solution, resulting in fluorescent crystals. These “ colored ” crystals displayed polarized emission (red) with a high polarization ratio because of the alignment of these dyes imposed by the crystallographic structure. A second-harmonic generation (SHG) study revealed Kleinman symmetry-forbidden nonlinear optical properties. These surface-bound and oriented SHG-active MOFs have the potential for use as single nonlinear optical (NLO) devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.