The course of preventive oral treatment with a dihydroquercetin-chitosan composition produced a strong antihypoxic effect under conditions of experimental hypobaric hypoxia (arbitrary altitude 12,000 m). The lactate/pyruvate ratio in composition-receiving rats was much lower than in hypoxic animals (by 83%), but higher than in intact specimens (by 29%). The composition of chitosan and dihydroquercetin also possessed a strong antioxidant activity.
This research was aimed at investigating the features of free radical activity and the parameters of glutathione metabolism in tumor tissues and the peritumoral zone at different degrees of glial tumor anaplasia. We analyzed postoperative material from 20 patients with gliomas of different degrees of anaplasia. The greatest differences compared to adjacent noncancerous tissues were found in the tumor tissue: an increased amount of glutathione and glutathione-related enzymes at Grades I and II, and a decrease of these parameters at Grades III and IV. For the peritumoral zone of Grades I and II, the indices changed in different directions, while for Grades III and IV, they occurred synchronously with the tumor tissue changes. For Low Grade and High Grade gliomas, opposite trends were revealed regarding changes in the level of glutathione and the enzymes involved in its metabolism and in the free radical activity in the peritumoral zone. The content of glutathione and the enzymes involved in its metabolism decreased with the increasing degree of glioma anaplasia. In contrast, free radical activity increased. The glutathione system is an active participant in the antioxidant defense of the body and can be used to characterize the cell condition of gliomas at different stages of tumor development.
This research aimed to investigate the relationships between the parameters of glutathione metabolism and the immunohistochemical characteristics of glial tumors. Postoperative material from 20 patients with gliomas of different grades of anaplasia was analyzed. Bioinformatic analysis of the interactions between the gliomas’ immunohistochemical markers and their glutathione-dependent enzymes was carried out using the STRING, BioGrid, while Signor databases revealed interactions between such glioma markers as IDH and p53 and the glutathione exchange enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase). The most pronounced relationship with glutathione metabolism was demonstrated by the level of the nuclear protein Ki67 as a marker of proliferative activity, and the presence of the IDH1 mutation as one of the key genetic events of gliomagenesis. The glutathione system is an active participant in the body’s antioxidant defense, involving the p53 markers and MGMT promoter methylation. It allows characterization of the gliomal cells’ status at different stages of tumor development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.