The understanding of neurophysiological mechanisms responsible for motor imagery (MI) is essential for the development of brain-computer interfaces (BCI) and bioprosthetics. Our magnetoencephalographic (MEG) experiments with voluntary participants confirm the existence of two types of motor imagery, kinesthetic imagery (KI) and visual imagery (VI), distinguished by activation and inhibition of different brain areas in motor-related α - and β -frequency regions. Although the brain activity corresponding to MI is usually observed in specially trained subjects or athletes, we show that it is also possible to identify particular features of MI in untrained subjects. Similar to real movement, KI implies muscular sensation when performing an imaginary moving action that leads to event-related desynchronization (ERD) of motor-associated brain rhythms. By contrast, VI refers to visualization of the corresponding action that results in event-related synchronization (ERS) of α - and β -wave activity. A notable difference between KI and VI groups occurs in the frontal brain area. In particular, the analysis of evoked responses shows that in all KI subjects the activity in the frontal cortex is suppressed during MI, while in the VI subjects the frontal cortex is always active. The accuracy in classification of left-arm and right-arm MI using artificial intelligence is similar for KI and VI. Since untrained subjects usually demonstrate the VI imagery mode, the possibility to increase the accuracy for VI is in demand for BCIs. The application of artificial neural networks allows us to classify MI in raising right and left arms with average accuracy of 70% for both KI and VI using appropriate filtration of input signals. The same average accuracy is achieved by optimizing MEG channels and reducing their number to only 13.
We apply artificial neural network (ANN) for recognition and classification of electroencephalographic (EEG) patterns associated with motor imagery in untrained subjects. Classification accuracy is optimized by reducing complexity of input experimental data. From multichannel EEG recorded by the set of 31 electrodes arranged according to extended international 10-10 system, we select an appropriate type of ANN which reaches 80 ± 10% accuracy for single trial classification. Then, we reduce the number of the EEG channels and obtain an appropriate recognition quality (up to 73 ± 15%) using only 8 electrodes located in frontal lobe. Finally, we analyze the time-frequency structure of EEG signals and find that motor-related features associated with left and right leg motor imagery are more pronounced in the mu (8-13 Hz) and delta (1-5 Hz) brainwaves than in the high-frequency beta brainwave (15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30). Based on the obtained results, we propose further ANN optimization by preprocessing the EEG signals with a low-pass filter with different cutoffs. We demonstrate that the filtration of high-frequency spectral components significantly enhances the classification performance (up to 90 ± 5% accuracy using 8 electrodes only). The obtained results are of particular interest for the development of brain-computer interfaces for untrained subjects.
Age-related changes in the human brain functioning crucially affect the motor system, causing increased reaction time, low ability to control and execute movements, difficulties in learning new motor skills. The lifestyle and lowered daily activity of elderly adults, along with the deficit of motor and cognitive brain functions, might lead to the developed ambidexterity, i.e., the loss of dominant limb advances. Despite the broad knowledge about the changes in cortical activity directly related to the motor execution, less is known about age-related differences in the motor initiation phase. We hypothesize that the latter strongly influences the behavioral characteristics, such as reaction time, the accuracy of motor performance, etc. Here, we compare the neuronal processes underlying the motor initiation phase preceding fine motor task execution between elderly and young subjects. Based on the results of the whole-scalp sensor-level electroencephalography (EEG) analysis, we demonstrate that the age-related slowing down in the motor initiation before the dominant hand movements is accompanied by the increased theta activation within sensorimotor area and reconfiguration of the theta-band functional connectivity in elderly adults.
The development of new approaches to detect motor-related brain activity is key in many aspects of science, especially in brain-computer interface (BCI) applications. Even though some well-known features of motor-related electroencephalograms (EEGs) have been revealed using traditionally applied methods, they still lack a robust classification of motor-related patterns. Here we introduce new features of motor-related brain activity and uncover hidden mechanisms of the underlying neuronal dynamics by considering event-related desynchronization (ERD) of µ-rhythm in the sensorimotor cortex, i.e. tracking the decrease of the power spectral density in the corresponding frequency band. We hypothesize that motor-related ERD is associated with the suppression of random fluctuations of µ-band neuronal activity. This is due to a lowering of the number of active neuronal populations involved in the corresponding oscillation mode. In this case we expect more regular dynamics and a decrease in complexity of the EEG signal recorded over the sensorimotor cortex. In order to support this theses we apply measures of signal complexity by means of recurrence quantification analysis (RQA). In particular, we demonstrate that certain RQA quantifiers are very useful to detect the moment of movement onset and therefore are able to classify the laterality of executed movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.