Magnesium is the fourth most common mineral in the human body and the second richest intracellular cation. This element is necessary for many physiological reactions, especially in the cardiovascular and respiratory systems. COVID-19 is an infectious disease caused by SARS-CoV-2. The majority of people who become ill as a result of COVID-19 have mild-to-moderate symptoms and recover without specific treatment. Moreover, there are people who develop severe forms of COVID-19, which require highly specialized medical assistance. Magnesium deficiency may play a role in the pathophysiology of infection with SARS-CoV-2. The primary manifestation of COVID-19 remains respiratory, but the virus can spread to other organs and tissues, complicating the clinical picture and culminating in multiorgan failure. The key mechanisms involved in the disease include direct viral cytotoxicity, endothelial dysfunction, and exaggerated release of inflammatory cytokines. The aim of this review was to summarize the available data regarding the role of magnesium in COVID-19 patients and its particularities in different clinical settings.
The pathogeny of the metabolic syndrome (MetS) is not fully elucidated, but a link between visceral obesity and the increase of the proinflammatory response was proven. Atherosclerosis, perceived as a metabolic complication, draws attention to the peroxisome proliferator-activated receptors-alpha (PPARα). PPARα receptors are transcription factors involved in lipid metabolism, inflammation and atheromatosis. Hence, it interferes in the pathogeny of cardiovascular diseases and other chronic diseases too (neurological, psychical, neoplasical). The study of the expression of PPARα and its modulation on different level may be beneficial in the treatment of metabolic syndrome, intervening in the modulation of another proinflammatory factors.
PPAR -Mechanism of ActionThe peroxisome proliferator-activated receptors (PPAR), which comprise three PPAR isoform: PPARα, PPARγ and PPARδ (10), act as transcription factors, belonging to the nuclear receptor superfamily [4-6], The mechanism of action of PPARα (Fig. 1) is similar to that of other nuclear receptors (thyroid or that of vitamin D) [7][8][9]11]. The activation of the PPAR receptor determines a change in the structure of the receptor complex, followed by changes in the expression of coded genes. PPAR acts as a ligand-activated transcription factor [7,12].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.