The acute myeloid leukemia (AML)-associated translocation products AML1-ETO, PML-retinoic acid receptor alpha (RAR␣), and PLZF-RAR␣ encode aberrant transcription factors. Several lines of evidence suggest similar pathogenetic mechanisms for these fusion proteins. We used high-density oligonucleotide arrays to identify shared target genes in inducibly transfected U937 cells expressing AML1-ETO, PML-RAR␣, or PLZF-RAR␣. All three fusion proteins significantly repressed the expression of 38 genes and induced the expression of 14 genes. Several of the regulated genes were associated with Wnt signaling. One of these, plakoglobin (␥-catenin), was induced on the mRNA and protein level by all three fusion proteins. In addition, primary AML blasts carrying one of the fusion proteins significantly overexpressed plakoglobin. The plakoglobin promoter was cloned and shown to be induced by AML1-ETO, with promoter activation depending on the corepressor and histone deacetylase binding domains. The induction of plakoglobin by AML fusion proteins led to downstream signaling and transactivation of TCF-and LEF-dependent promoters, including the c-myc promoter, which was found to be bound by plakoglobin in vivo after AML1-ETO expression. -Catenin protein levels and TCF and LEF target genes such as c-myc and cyclin D1 were found to be induced by the fusion proteins. On the functional level, a dominant negative TCF inhibited colony growth of AML1-ETO-positive Kasumi cells, whereas plakoglobin transfection into myeloid 32D cells enhanced proliferation and clonal growth. Injection of plakoglobin-expressing 32D cells into syngeneic mice accelerated the development of leukemia. Transduction of plakoglobin into primitive murine hematopoietic progenitor cells preserved the immature phenotype during colony growth, suggesting enhanced self-renewal. These data provide evidence that activation of Wnt signaling is a common feature of several balanced translocations in AML.
Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein-protein interactions. Deletion of the PLZF POZ domain partially abrogated the inhibitory effect of PLZF-RAR alpha on RA-induced differentiation and on RA-mediated type II TGase up-regulation, suggesting that POZ-mediated protein interactions might be responsible for the inhibitory transcriptional activities of PLZF-RAR alpha.
Fusion proteins involving the retinoic acid receptor alpha (RARalpha) and PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemia (APL). APLs with PML-RARalpha or PLZF-RARalpha fusion protein differ only in their response to retinoic acid (RA) treatment: the t(15;17) (PML-RARalpha-positive) APL blasts are sensitive to RA in vitro, and patients enter disease remission after RA treatment, while those with t(11;17) (PLZF-RARalpha-positive) APLs do not. Recently it has been shown that complete remission can be achieved upon treatment with arsenic trioxide (As2O3) in PML-RARalpha-positive APL, even when the patient has relapsed and the disease is RA resistant. This appears to be due to apoptosis induced by As2O3 in the APL blasts by poorly defined mechanisms. Here we report that (i) As2O3 induces apoptosis only in cells expressing the PML-RARalpha, not the PLZF-RARalpha, fusion protein; (ii) PML-RARalpha is partially modified by covalent linkage with a PIC-1/SUMO-1-like protein prior to As2O3 treatment, whereas PLZF-RARalpha is not; (iii) As2O3 treatment induces a change in the modification pattern of PML-RARalpha toward highly modified forms; (iv) redistribution of PML nuclear bodies (PML-NBs) upon As2O3 treatment is accompanied by recruitment of PIC-1/SUMO-1 into PML-NBs, probably due to hypermodification of both PML and PML-RARalpha; (v) As2O3-induced apoptosis is independent of the DNA binding activity located in the RARalpha portion of the PML-RARalpha fusion protein; and (vi) the apoptotic process is bcl-2 and caspase 3 independent and is blocked only partially by a global caspase inhibitor. Taken together, these data provide novel insights into the mechanisms involved in As2O3-induced apoptosis in APL and predict that treatment of t(11;17) (PLZF-RARalpha-positive) APLs with As2O3 will not be successful.
Background and ObjectivesStem cells play an important role in the pathogenesis and maintenance of most malignant tumors. Acute myeloid leukemia (AML) is a stem cell disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. Acute promyelocytic leukemia (APL) is a subtype of AML characterized by the t(15;17) translocation and expression of the PML/RARα fusion protein. Treatment of APL with all-trans retinoic acid (ATRA) induces CR, but not molecular remission (CMR), because the fusion transcript remains detectable, followed by relapse within a few months. Arsenic induces high rates of CR and CMR followed by a long relapse-free survival (RFS). Here we compared the effects of ATRA and arsenic on PML/RARα-positive stem cell compartments. Design and MethodsAs models for the PML/RARα-positive LSC we used: (i) Sca1 + /lin -murine HSC retrovirally transduced with PML/RARα; (ii) LSC from mice with PML/RARα-positive leukemia; (iii) the side population of the APL cell line NB4. ResultsIn contrast to ATRA, arsenic abolishes the aberrant stem cell capacity of PML/RARα-positive stem cells. Arsenic had no apparent influence on the proliferation of PML/RARα-positive stem cells, whereas ATRA greatly increased the proliferation of these cells. Furthermore ATRA induces proliferation of APL-derived stem cells, whereas arsenic inhibits their growth. Interpretations and ConclusionsTaken together our data suggest a relationship between the capacity of a compound to target the leukemia-initiating cell and its ability to induce long relapse-free survival. These data strongly support the importance of efficient LSC-targeting for the outcome of patients with leukemia. 1 The AML phenotype seems to be maintained by an increased proliferation of the blast cells, which is considered to result from the combination of two components: (i) a differentiation block preventing progenitor cells reaching the post-proliferative stage and subsequently undergoing programmed cell death; 2 (ii) an increased capacity for self-renewal of the leukemic progenitors.3,4 Acute promyelocytic leukemia (APL) is a well characterized subtype of AML, classified as FAB M3.5 It can be distinguished from other AML subtypes based on distinct cytogenetic, biological and clinical features.6 More than 95% of patients with APL harbor the t(15;17) translocation, which encodes the PML/RARα fusion protein.5 In addition, APL is clinically characterized by (i) the achievement of complete remission (CR) in about 90% of patients upon treatment with all-trans retinoic acid (ATRA); 7 and (ii) induction of CR in 72-96% of patients upon exposure to low dose arsenic trioxide (As2O3). 8Treatment with ATRA as a single agent results in CR but not complete molecular remission (CMR), because the t(15;17)-associated PML/RARα fusion transcript remains detectable. In about 29% of patients CMR can be induced by ATRA if double the dosage is administered as a liposomal formulati...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.