Background and ObjectivesStem cells play an important role in the pathogenesis and maintenance of most malignant tumors. Acute myeloid leukemia (AML) is a stem cell disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. Acute promyelocytic leukemia (APL) is a subtype of AML characterized by the t(15;17) translocation and expression of the PML/RARα fusion protein. Treatment of APL with all-trans retinoic acid (ATRA) induces CR, but not molecular remission (CMR), because the fusion transcript remains detectable, followed by relapse within a few months. Arsenic induces high rates of CR and CMR followed by a long relapse-free survival (RFS). Here we compared the effects of ATRA and arsenic on PML/RARα-positive stem cell compartments. Design and MethodsAs models for the PML/RARα-positive LSC we used: (i) Sca1 + /lin -murine HSC retrovirally transduced with PML/RARα; (ii) LSC from mice with PML/RARα-positive leukemia; (iii) the side population of the APL cell line NB4. ResultsIn contrast to ATRA, arsenic abolishes the aberrant stem cell capacity of PML/RARα-positive stem cells. Arsenic had no apparent influence on the proliferation of PML/RARα-positive stem cells, whereas ATRA greatly increased the proliferation of these cells. Furthermore ATRA induces proliferation of APL-derived stem cells, whereas arsenic inhibits their growth. Interpretations and ConclusionsTaken together our data suggest a relationship between the capacity of a compound to target the leukemia-initiating cell and its ability to induce long relapse-free survival. These data strongly support the importance of efficient LSC-targeting for the outcome of patients with leukemia. 1 The AML phenotype seems to be maintained by an increased proliferation of the blast cells, which is considered to result from the combination of two components: (i) a differentiation block preventing progenitor cells reaching the post-proliferative stage and subsequently undergoing programmed cell death; 2 (ii) an increased capacity for self-renewal of the leukemic progenitors.3,4 Acute promyelocytic leukemia (APL) is a well characterized subtype of AML, classified as FAB M3.5 It can be distinguished from other AML subtypes based on distinct cytogenetic, biological and clinical features.6 More than 95% of patients with APL harbor the t(15;17) translocation, which encodes the PML/RARα fusion protein.5 In addition, APL is clinically characterized by (i) the achievement of complete remission (CR) in about 90% of patients upon treatment with all-trans retinoic acid (ATRA); 7 and (ii) induction of CR in 72-96% of patients upon exposure to low dose arsenic trioxide (As2O3). 8Treatment with ATRA as a single agent results in CR but not complete molecular remission (CMR), because the t(15;17)-associated PML/RARα fusion transcript remains detectable. In about 29% of patients CMR can be induced by ATRA if double the dosage is administered as a liposomal formulati...
Acute myeloid leukemia is characterized by a differentiation block as well as by an increased self-renewal of hematopoietic precursors in the bone marrow. This phenotype is induced by specific acute myeloid leukemia-associated translocations, such as t(15;17) and t(11;17), which involve an identical portion of the retinoic acid receptor A (RARA) and either the promyelocytic leukemia (PML) or promyelocytic zinc finger (PLZF) genes, respectively. The resulting fusion proteins form high molecular weight complexes and aberrantly bind several histone deacetylase-recruiting nuclear corepressor complexes. The amino-terminal BTB/POZ domain is indispensable for the capacity of PLZF to form high molecular weight complexes. Here, we studied the role of dimerization and binding to histone deacetylase-recruiting nuclear corepressor complexes for the induction of the leukemic phenotype by PLZF/RARA and we show that (a) the BTB/POZ domain mediates the oligomerization of PLZF/RARA; (b) mutations that inhibit dimerization of PLZF do the same in PLZF/RARA; (c) the PLZF/RARA-related block of differentiation requires an intact BTB/POZ domain; (d) the mutations interfering with either folding of the BTB/ POZ domain or with its charged pocket prevent the self-renewal of PLZF/RARA-positive hematopoietic stem cells. Taken together, these data provide evidence that the dimerization capacity and the formation of a functionally charged pocket are indispensable for the PLZF/RARA-induced leukemogenesis. (Cancer Res 2005; 65(14): 6080-8)
Breast cancer is the second leading cause of cancer deaths among women in the world. Treatment has been improved and, in combination with early detection, this has resulted in reduced mortality rates. Further improvement in therapy development is however warranted. This will be particularly important for certain sub-classes of breast cancer, such as triple-negative breast cancer, where currently no specific therapies are available. An important therapy development focus emerges from the notion that dysregulation of two major signaling pathways, Notch and Wnt signaling, are major drivers for breast cancer development. In this review, we discuss recent insights into the Notch and Wnt signaling pathways and into how they act synergistically both in normal development and cancer. We also discuss how dysregulation of the two pathways contributes to breast cancer and strategies to develop novel breast cancer therapies starting from a Notch and Wnt dysregulation perspective.
The dysregulated Hippo pathway and, consequently, hyperactivity of the transcriptional YAP/TAZ-TEAD complexes is associated with diseases such as cancer. Prevention of YAP/TAZ-TEAD triggered gene transcription is an attractive strategy for therapeutic intervention. The deeply buried and conserved lipidation pocket (P-site) of the TEAD transcription factors is druggable. The discovery and optimization of a P-site binding fragment (1) are described. Utilizing structure-based design, enhancement in target potency was engineered into the hit, capitalizing on the established X-ray structure of TEAD1. The efforts culminated in the optimized in vivo tool MSC-4106, which exhibited desirable potency, mouse pharmacokinetic properties, and in vivo efficacy. In close correlation to compound exposure, the time-and dose-dependent downregulation of a proximal biomarker could be shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.