We performed unbiased, comprehensive immunophenotyping of cerebrospinal fluid (CSF) and blood leukocytes in 221 subjects referred for the diagnostic work-up of neuroimmunological disorders in order to obtain insight about disease-specific phenotypes of intrathecal immune responses. Quantification of 14 different immune cell subsets, coupled with the assessment of their activation status, revealed physiological differences between intrathecal and systemic immunity, irrespective of final diagnosis. Our data are consistent with a model, where the central nervous system shapes intrathecal immune responses to provide effective protection against persistent, especially by memory T cells, plasmacytoid dendritic cells and CD56bright NK cells. Our data also argue that CSF immune cells do not simply reflect cells recruited from the periphery. Instead, they represent a mixture of cells that are recruited from the blood, have been activated intrathecally and leave the CNS after performing effector functions. Diagnosis-specific differences provide mechanistic insight into the disease process in the defined subtypes of multiple sclerosis (MS), neonatal onset multisystem inflammatory disease and Aicardi-Goutieres syndrome. This analysis also determined that secondary-progressive MS patients are immunologically closer to relapsing-remitting patients as compared to patients with primary-progressive MS. Because CSF immunophenotyping captures the biology of the intrathecal inflammatory processes, it has the potential to guide optimal selection of immunomodulatory therapies in individual patients and monitor their efficacy. Our study adds to the increasing number of publications that demonstrate poor correlation between systemic and intrathecal inflammatory biomarkers in patients with neuroimmunological diseases and stresses the importance of studying immune responses directly in the intrathecal compartment.
Objective The management of complex patients with neuroimmunological diseases is hindered by an inability to reliably measure intrathecal inflammation. Currently implemented laboratory tests developed >40 years ago either are not dynamic or fail to capture low levels of central nervous system (CNS) inflammation. Therefore, we aimed to identify and validate biomarkers of CNS inflammation in 2 blinded, prospectively acquired cohorts of untreated patients with neuroimmunological diseases and embedded controls, with the ultimate goal of developing clinically useful tools. Methods Because biomarkers with maximum utility reflect immune phenotypes, we included an assessment of cell specificity in purified primary immune cells. Biomarkers were quantified by optimized electrochemiluminescent immunoassays. Results Among markers with cell-specific secretion, soluble CD27 is a validated biomarker of intrathecal T-cell activation, with an area under the receiver operating characteristic curve of 0.97. Comparing the quantities of cerebrospinal fluid (CSF) immune cells and their respective cell-specific soluble biomarkers (released by CSF cells as well as their counterparts in CNS tissue) provided invaluable information about stationary CNS immune responses, previously attainable via brain biopsy only. Unexpectedly, progressive and relapsing–remitting multiple sclerosis (MS) patients have comparable numbers of activated intrathecal T and B cells, which are preferentially embedded in CNS tissue in the former group. Interpretation The cell-specific biomarkers of intrathecal inflammation may improve diagnosis and management of neuroimmunological diseases and provide pharmacodynamic markers for future therapeutic developments in patients with intrathecal inflammation that is not captured by imaging, such as in progressive MS.
The myelin transcription factor 1 (Myt1) gene family is comprised of three zinc finger genes [Myt1, and NZF3] of the structurally unique CCHHC class that are expressed predominantly in the developing CNS. To understand the mechanism by which this family regulates neural differentiation, we searched for interaction partners. In both yeast and a mammalian two-hybrid system, Myt1 and Myt1L interacted with Sin3B, a protein that mediates transcriptional repression by binding to histone deacetylases (HDACs). Myt1-Sin3B complexes were co-immunoprecipitated from transfected mammalian cells and included HDAC1 and HDAC2. Myt1 and Myt1L could partner with all three Sin3B isoforms, the long form (Sin3B LF ) that includes the HDAC-binding domain, and the two short forms (Sin3B SF293 and Sin3B SF302 ) that lack this domain and may consequently antagonize Sin3B LF /HDAC-mediated co-repression. Myt1 or Myt1L interactions with the HDAC-binding form of Sin3B conferred repression on a heterologous promoter. Oligodendrocytes were shown to express transcripts encoding each of the Sin3B isoforms. We present a model in which the Myt1 family of zinc finger proteins, when bound to a neural promoter, can recruit Sin3B. Depending on the relative availability of Sin3B isoforms, the Myt1 gene family may favor the silencing of genes during neural development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.