DNA replication in mammalian cells occurs in discrete nuclear foci called ‘replication factories’. Here we show that DNA ligase I, the main DNA ligase activity in proliferating cells, associates with the factories during S phase but displays a diffuse nucleoplasmic distribution in non‐S phase nuclei. Immunolocalization analysis of both chloramphenicol acetyltransferase (CAT)‐DNA ligase I fusion proteins and epitope tagged DNA ligase I mutants allowed the identification of a 13 amino acid functional nuclear localization signal (NLS) located in the N‐terminal regulatory domain of the protein. Furthermore, the NLS is immediately preceded by a 115 amino acid region required for the association of the enzyme with the replication factories. We propose that in vivo the activity of DNA ligase I could be modulated through the control of its sub‐nuclear compartmentalization.
We have studied the regulation of mammalian DNA ligase I gene by using a cDNA probe in Northern blot experiments with RNA extracted from several cell types in different growth conditions. DNA ligase I mRNA is detected in all analysed cell systems, regardless of their proliferation state, including mature rat neurons. A significant increase in DNA ligase I mRNA level is observed when cells are induced to proliferate, in agreement with the raise of DNA joining activity found in the same cell systems. The increase parallels the start of DNA synthesis, but the messenger remains at high level beyond the end of the S phase and is detected also in the presence of aphidicolin. A decrease in DNA ligase I mRNA is observed in HL-60 and NIH-3T3 cells after differentiation. The high stability of DNA ligase I mRNA in both resting and proliferating human fibroblasts suggests a cell proliferation dependent rate of transcription. On the other hand the presence of a basal level of DNA ligase I in nondividing cells, strongly suggests an involvement of this enzyme in DNA repair. This conclusion is supported by a threefold increase in DNA ligase I observed 24 h after UV irradiation of human confluent primary fibroblasts.
We have studied the regulation of DNA ligase I gene expression in UV-C irradiated human primary fibroblasts. An increase of approximately 6-fold both in DNA ligase I messenger and activity levels was observed 24 h after UV treatment, when nucleotide excision repair (NER) is no longer operating. DNA ligase I induction is serum-independent and is controlled mainly by the steady-state level of its mRNA. The activation is a function of the UV dose and occurs at lower doses in cells showing UV hypersensitivity. No increase in replicative DNA polymerase alpha activity was found, indicating that UV induction of DNA ligase I occurs through a pathway that differs from the one causing activation of the replication machinery. These data suggest that DNA ligase I induction could be linked to the repair of DNA damage not removed by NER.
We mapped the murine DNA ligase I gene (Lig1) in the mouse genome by using a mapping panel from an interspecific cross. Lig1 mapped to a centromeric part of chromosome 7, a region homologous to human chromosome 19q, where the human homologue LIG1 was localized. In addition, Lig1 expression was analyzed during the course of mouse liver-cell regeneration induced by partial hepatectomy, necrogenic doses of carbon tetrachloride, or the mitogen 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene. The results demonstrate that Lig1 is expressed in the liver during active cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.