This paper presents the results of analyses of the incidence of malignant neoplasms in lung, liver, and bone and associated connective tissues among Mayak nuclear workers exposed to both internally incorporated plutonium and to external gamma radiation. The study cohort included 22,373 individuals employed at the reactors and radiochemical and plutonium production facilities of the Mayak nuclear complex during 1948-1982 and followed up to the end of 2004. All analyses were carried out by Poisson regression, and the doses used were derived using a recently available update of organ doses, Mayak doses-2008. There was clear evidence for the linear association between internal plutonium dose and the risk of lung cancer. For males, there was evidence of a significant internal plutonium dose response for all histological types of lung cancer evaluated (adenocarcinoma, squamous-cell, and other epithelial); the estimated excess relative risk (ERR)/Gy for adenocarcinoma was the largest (ERR/Gy = 32.5; 95% CI: 16.3; 71.9), about 11-fold higher than that for squamous-cell lung cancer (ERR/Gy = 3.1; 95% CI: 0.3; 9.1). The relationship between liver cancer risk and plutonium exposure was best described by a linear-quadratic (LQ) function, but the LQ effect was diminished after restricting internal doses <2 Gy. Hepatocellular cancer was the most frequently observed type of liver cancer associated with internal plutonium exposure, and hemangiosarcomas were exclusively observed only at high internal plutonium doses (>4 Gy). For malignant neoplasms of bone and associated connective tissues, the trend was not statistically significant in relation to internal plutonium dose, but a statistically significantly higher risk (RR=13.7; 95% CI= 3.0; 58.5) was found among unmonitored female plutonium workers who were employed in the most hazardous plutonium production facility commissioned prior to 1950.
Background:Cancer incidence in the Mayak Production Association (PA) cohort was analysed to investigate for the first time whether external gamma-ray and internal plutonium exposure are associated with raised incidence of solid cancers other than lung, liver and bone (other solid cancers).Methods:The cohort includes 22 366 workers of both sexes who were first employed between 1948 and 1982. A total of 1447 cases of other solid cancers were registered in the follow-up period until 2004. The Poisson regression was used to estimate the excess relative risk (ERR) per unit of cumulative exposure to plutonium and external gamma-ray.Results:A weak association was found between cumulative exposure to external gamma-ray and the incidence of other solid cancers (ERR/Gy=0.07; 95% confidence intervals (CIs): 0.01–0.15), but this association lost its significance after adjusting for internal plutonium exposure. There was no indication of any association with plutonium exposure for other solid cancers. Among 16 individual cancer sites, there was a statistically significant association with external exposure for lip cancer (ERR/Gy=1.74; 95% CI: 0.37; 6.71) and with plutonium exposure for pancreatic cancer (ERR/Gy=1.58; 95% CI; 0.17; 4.77).Conclusion:This study of Mayak workers does not provide evidence of an increased risk of other solid cancers. The observed increase in the risk of cancer of the lip and pancreas should be treated with caution because of the limited amount of relevant data and because the observations may be simply due to chance.
Incidence of all types of lymphatic and hematopoietic cancers, including Hodgkin’s lymphoma, non-Hodgkin's lymphoma, multiple myeloma, acute and chronic myeloid leukemia (AML and CML respectively), chronic lymphocytic leukemia (CLL) and other forms of leukemia have been studied in a cohort of 22,373 workers employed at the Mayak Production Association (PA) main facilities during 536,126 person-years of follow-up from the start of employment between 1948 and 1982 to the end of 2004. Risk assessment was performed for both external gamma-radiation and internal alpha-exposure of red bone marrow due to incorporated Pu-239 using Mayak Workers Dosimetry System 2008 taking into account non-radiation factors. The incidence of leukemia excluding CLL showed a non-linear dose response relationship for external gamma exposure with exponential effect modifiers based on time since exposure and age at exposure. Among the major subtypes of leukemia, the excess risk of AML was the highest within the first 2–5 years of external exposure (ERR per Gy: 38.40; 90% CI: 13.92–121.4) and decreased substantially thereafter, but the risks remained statistically significant (ERR per Gy: 2.63; 90% CI: 0.07–12.55). In comparison, excess CML first occurred 5 years after exposure and decreased about 10 years after exposure, although the association was not statistically significant (ERR per Gy: 1.39; 90% CI: -0.22–7.32). The study found no evidence of an association between leukemia and occupational exposure to internal plutonium ERR per Gy 2.13; 90% CI: <0–9.45). There was also no indication of any relationship with either external gamma or internal plutonium radiation exposure for either incidence of Hodgkin or non-Hodgkin lymphoma or multiple myeloma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.