Virotherapy is currently undergoing a renaissance, based on our improved understanding of virus biology and genetics and our better knowledge of many different types of cancer. Viruses can be reprogrammed into oncolytic vectors by combining three types of modification: targeting, arming and shielding. Targeting introduces multiple layers of cancer specificity and improves safety and efficacy; arming occurs through the expression of prodrug convertases and cytokines; and coating with polymers and the sequential usage of different envelopes or capsids provides shielding from the host immune response. Virus-based therapeutics are beginning to find their place in cancer clinical practice, in combination with chemotherapy and radiation.
Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereas Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.
Polyethylene glycol (PEG) is a hydrophilic polymer that has been used to coat adenoviral (Ad) vectors to improve their pharmacology. To analyze the effects of PEG on Ad5 tropism, Ad5 was covalently modified with different sizes of PEG and in vitro and in vivo transduction was analyzed. All tested PEGs ablated in vitro transduction. When protein C (PC) and factors VII, IX, and X were added, only factors IX and X increased transduction by the PEGylated vectors with the largest effect by X. Inactivation of these factors with warfarin drastically reduced liver transduction in mice by the PEGylated vectors after intravenous (i.v.) injection. Ad5 conjugated with 5 kd PEG maintained normal liver transduction while conjugation with larger 20 and 35 kd PEGs significantly reduced liver transduction. When intraperitoneal (i.p.) injection was tested, Ad transduced the peritoneum efficiently with only low level liver transduction. When Ad5 was modified with 5 kd PEG, peritoneal transduction was reduced and the virus preferentially transduced the liver. These data demonstrate the effects of different sizes of PEG on in vivo Ad tropism and suggest that this approach may be useful in retargeting and detargeting Ad in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.