Objective. Glomerulonephritis is a severe manifestation of systemic lupus erythematosus (SLE) that is usually treated with an extended course of intravenous (IV) cyclophosphamide (CYC). Given the side effects of this regimen, we evaluated the efficacy and the toxicity of a course of low-dose IV CYC prescribed as a remission-inducing treatment, followed by azathioprine (AZA) as a remission-maintaining treatment.Methods. In this multicenter, prospective clinical trial (the Euro-Lupus Nephritis Trial [ELNT]), we randomly assigned 90 SLE patients with proliferative glomerulonephritis to a high-dose IV CYC regimen (6 monthly pulses and 2 quarterly pulses; doses increased according to the white blood cell count nadir) or a low-dose IV CYC regimen (6 fortnightly pulses at a fixed dose of 500 mg), each of which was followed by AZA. Intent-to-treat analyses were performed.Results. Followup continued for a median of 41.3 months in the low-dose group and 41 months in the high-dose group. Sixteen percent of those in the lowdose group and 20% of those in the high-dose group experienced treatment failure (not statistically significant by Kaplan-Meier analysis). Levels of serum creatinine, albumin, C3, 24-hour urinary protein, and the disease activity scores significantly improved in both groups during the first year of followup. Renal remission was achieved in 71% of the low-dose group and 54% of the high-dose group (not statistically significant). Renal flares were noted in 27% of the low-dose group and 29% of the high-dose group. Although episodes of severe infection were more than twice as frequent in the Supported by the European League Against Rheumatism.
Measles (MV) is an aerosol-transmitted virus that affects more than 10 million children each year and accounts for approximately 120,000 deaths1,2. While it was long believed to replicate in the respiratory epithelium before disseminating, it was recently shown to initially infect macrophages and dendritic cells of the airways using the signaling lymphocytic activation molecule (SLAM, CD150) as receptor3-6. These cells then cross the respiratory epithelium and ferry the infection to lymphatic organs where MV replicates vigorously7. How and where the virus crosses back into the airways has remained unknown. Based on functional analyses of surface proteins preferentially expressed on virus-permissive epithelial cell lines, we identified nectin-48 (poliovirus-receptor-like-4) as a candidate host exit receptor. This adherens junction protein of the immunoglobulin superfamily interacts with the viral attachment protein with high affinity through its membrane-distal domain. Nectin-4 sustains MV entry and non-cytopathic lateral spread in well-differentiated primary human airway epithelial sheets infected basolaterally. It is down-regulated in infected epithelial cells, including those of macaque tracheas. While other viruses use receptors to enter hosts or transit through their epithelial barriers, we suggest that MV targets nectin-4 to emerge in the airways. Nectin-4 is a cellular marker of several types of cancer9-11, which has implications for ongoing MV-based clinical trials of oncolysis12.
The Edmonston vaccine strain of measles virus (MV-Edm) propagates efficiently in a broad range of human tumor cells, killing them selectively. However, the oncolytic potency of MV-Edm in different human tumor xenograft therapy models is highly variable and there is no convenient way to map the distribution of virus-infected tissues in vivo. To enhance the oncolytic potency of MV-Edm against radiosensitive malignancies and to facilitate noninvasive imaging of infected tissues, we generated a recombinant MV-Edm encoding the human thyroidal iodide symporter (NIS). MV-NIS replicated almost as efficiently as unmodified MV-Edm, and human tumor cells efficiently concentrated radioiodine when infected with MV-NIS. Intratumoral spread of MV-NIS was noninvasively demonstrated by serial gammacamera imaging of iodine-123 ( 123 I) uptake both in MV-sensitive KAS-6/1 myeloma xenografts, which regressed completely after a single intravenous dose of MV-NIS, and in MM1 myeloma xenografts, which were unresponsive to MV-NIS therapy. However, MV-resistant MM1 tumors regressed completely when 131 I was administered 9 days after a single intravenous injection of MV-NIS (radiovirotherapy). 131 I alone had no effect on MM1 tumor growth. While the potential hematopoietic toxicity of this new therapy requires further evaluation, image-guided radiovirotherapy is a promising new approach to the treatment of multiple myeloma, an incurable but highly radiosensitive plasma cell malignancy. Testing in other radiosensitive cancers is warranted. IntroductionMultiple myeloma is a disseminated malignancy of antibodysecreting plasma cells that reside in active bone marrow. Clinical features of the disease include bone pain, lytic lesions, pathologic fractures, hypercalcemia, anemia, suppression of humoral immunity, and renal dysfunction caused by the tumor-derived monoclonal immunoglobulin. 1 In most patients, the fraction of proliferating cells is less than 1% until late in the disease. 2 Standard therapy is with alkylating agents (melphalan, cyclophosphamide) plus prednisone or combination chemotherapy (vincristine, doxorubicin, and dexamethasone) followed by high-dose melphalan with stem cell rescue. 1,3 At relapse, patients can be offered thalidomide or investigational drugs such as PS-341. [3][4][5] The disease, however, remains incurable and new therapeutic approaches are required.Myeloma cells are highly radiosensitive, and local radiotherapy provides effective palliation for painful bone lesions. 6 However, the disseminated nature of myeloma precludes curative external beam radiation therapy due to unacceptable end organ toxicity. 7 Bone-seeking radioisotopes that bind to bone mineral are being tested in multiple myeloma, 8 but their appeal and efficacy are limited by their inability to penetrate into the centers of myelomatous bone marrow deposits.Replicating viruses have considerable potential as cytoreductive agents for cancer. 9,10 Of the oncolytic viruses currently under investigation, measles virus (MV) is naturally lymphotrophic 11 ...
Virotherapy is currently undergoing a renaissance, based on our improved understanding of virus biology and genetics and our better knowledge of many different types of cancer. Viruses can be reprogrammed into oncolytic vectors by combining three types of modification: targeting, arming and shielding. Targeting introduces multiple layers of cancer specificity and improves safety and efficacy; arming occurs through the expression of prodrug convertases and cytokines; and coating with polymers and the sequential usage of different envelopes or capsids provides shielding from the host immune response. Virus-based therapeutics are beginning to find their place in cancer clinical practice, in combination with chemotherapy and radiation.
We assessed the alterations of viral gene expression occurring during persistent infections by cloning full-length transcripts of measles virus (MV) genes from brain autopsies of two subacute sclerosing panencephalitis patients and one measles inclusion body encephalitis (MIBE) patient. the sequence of these MV genes revealed that, most likely, almost 2% of the nucleotides were mutated during persistence, and 35% of these differences resulted in amino acid changes. One of these nucleotide substitutions and one deletion resulted in alteration of the reading frames of two fusion genes, as confirmed by in vitro translation of synthetic mRNAs. One cluster of mutations was exceptional; in the matrix gene of the MIBE case, 50% of the U residues were changed to C, which might result from a highly biased copying event exclusively affecting this gene. We propose that the cluster of mutations in the MIBE case, and other combinations of mutations in other cases, favored propagation of MV infections in brain cells by conferring a selective advantage to the mutated genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.