We propose a novel application of clustering analysis to identify regularities in the usage of entities in axioms within an ontology. We argue that such regularities will be able to help to identify parts of the schemas and guidelines upon which ontologies are often built, especially in the absence of explicit documentation. Such analysis can also isolate irregular entities, thus highlighting possible deviations from the initial design. The clusters we obtain can be fully described in terms of generalised axioms that offer a synthetic representation of the detected regularity. In this paper we discuss the results of the application of our analysis to different ontologies and we discuss the potential advantages of incorporating it into future authoring tools.
MotivationIn this paper we demonstrate the usage of RIO; a framework for detecting syntactic regularities using cluster analysis of the entities in the signature of an ontology. Quality assurance in ontologies is vital for their use in real applications, as well as a complex and difficult task. It is also important to have such methods and tools when the ontology lacks documentation and the user cannot consult the ontology developers to understand its construction. One aspect of quality assurance is checking how well an ontology complies with established ‘coding standards’; is the ontology regular in how descriptions of different types of entities are axiomatised? Is there a similar way to describe them and are there any corner cases that are not covered by a pattern? Detection of regularities and irregularities in axiom patterns should provide ontology authors and quality inspectors with a level of abstraction such that compliance to coding standards can be automated. However, there is a lack of such reverse ontology engineering methods and tools.ResultsRIO framework allows regularities to be detected in an OWL ontology, i.e. repetitive structures in the axioms of an ontology. We describe the use of standard machine learning approaches to make clusters of similar entities and generalise over their axioms to find regularities. This abstraction allows matches to, and deviations from, an ontology’s patterns to be shown. We demonstrate its usage with the inspection of three modules from SNOMED-CT, a large medical terminology, that cover “Present” and “Absent” findings, as well as “Chronic” and “Acute” findings. The module sizes are 5 065, 20 688 and 19 812 asserted axioms. They are analysed in terms of their types and number of regularities and irregularities in the asserted axioms of the ontology. The analysis showed that some modules of the terminology, which were expected to instantiate a pattern described in the SNOMED-CT technical guide, were found to have a high number of regularity deviations. A subset of these were categorised as “design defects” by verifying them with past work on the quality assurance of SNOMED-CT. These were mainly incomplete descriptions. In the worst case, the expected patterns described in the technical guide were followed by only 5% of the axioms in the module.ConclusionIt is possible to automatically detect regularities and then inspect irregularities in an ontology. We argue that RIO is a tool to find and report such matches and mismatches, for evaluations by the domain experts. We have demonstrated that standard clustering techniques from machine learning can offer a tool in the drive for quality assurance in ontologies.Availabilityhttp://riotool.sourceforge.net/Contacthttp://eleni.mikroyannidi@manchester.ac.uk, http://robert.stevens@manchehster.ac.uk
The Code/Theory workshop explored the process of translating between theory and code, from the perspective of those who do this work on a day to day basis. This report contains individual contributions from participants reflecting on their own experiences, along with summaries of their lightning talks and outputs from the discussion sessions. We conclude that translating between theory and code successfully requires a diversity of roles, all of which are central to the process of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.