Analysis of classical cerebrospinal fluid biomarkers, especially when incorporated in a classification/diagnostic system such as the AT(N), may offer a significant diagnostic tool allowing correct identification of Alzheimer’s disease during life. We describe four patients with more or less atypical or mixed clinical presentation, in which the classical cerebrospinal fluid biomarkers amyloid peptide with 42 and 40 amino acids (Aβ42 and Aβ40, respectively), phospho-tau (τP-181) and total tau (τΤ) were measured. Despite the unusual clinical presentation, the biomarker profile was compatible with Alzheimer’s disease in all four patients. The measurement of classical biomarkers in the cerebrospinal fluid may be a useful tool in identifying the biochemical fingerprints of Alzheimer’s disease, especially currently, due to the recent approval of the first disease-modifying treatment, allowing not only typical but also atypical cases to be enrolled in trials of such treatments.
Blood phospho-tau181 may offer a useful biomarker for Alzheimer’s disease. However, the use of either serum or plasma phospho-tau181 and their diagnostic value are currently under intense investigation. In a pilot study, we measured both serum and plasma phospho-tau181 (pT181-Tau) by single molecule array (Simoa) in a group of patients with Alzheimer’s disease and a mixed group of patients with other primary dementing and/or movement disorders. Classical cerebrospinal fluid biomarkers were also measured. Plasma (but not serum) pT181-Tau showed a significant increase in Alzheimer’s disease and correlated significantly with cerebrospinal fluid amyloid and pT181-Tau. Receiver operating curve analysis revealed a significant discrimination of Alzheimer’s from non-Alzheimer’s disease patients, with an area under the curve of 0.83 and an excellent sensitivity but a moderate specificity. Plasma pT181-Tau is not an established diagnostic biomarker for Alzheimer’s disease, but it could become one in the future, or it may serve as a screening tool for specific cases of patients or presymptomatic subjects.
The use and interpretation of diagnostic cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders, such as Dementia with Lewy bodies (DLB), represent a clinical challenge. According to the literature, the composition of CSF in DLB patients varies. Some patients present with reduced levels of amyloid, others with full Alzheimer Disease CSF profile (both reduced amyloid and increased phospho-tau) and some with a normal profile. Some patients may present with abnormal levels of a-synuclein. Continuous efforts will be required to establish useful CSF biomarkers for the early diagnosis of DLB. Given the heterogeneity of methods and results between studies, further validation is fundamental before conclusions can be drawn.
The process of memory entails the activation of numerous neural networks and biochemical pathways throughout the brain. The phenomenon of memory decline in relation to aging has been the subject of extensive research for several decades. The correlation between the process of aging and memory is intricate and has various aspects to consider. Throughout the aging process, there are various alterations that take place within the brain and, as expected, affect other functions that have already been linked to memory and its function such as involving microcirculation and sleep. Recent studies provide an understanding of how these mechanisms may be interconnected through the relatively new concept of the glymphatic system. The glymphatic system is strongly correlated to sleep processes. Sleep helps the glymphatic system remove brain waste solutes. Astrocytes expand and contract to form channels for cerebrospinal fluid (CSF) to wash through the brain and eliminate waste. However, the details have not been totally elusive, but the discovery of what we call the glymphatic system enables us to connect many pieces of physiology to understand how such factors are interconnected and the interplay between them. Thus, the purpose of this review is to discuss how the glymphatic system, sleep, memory, and aging are interconnected through a network of complex mechanisms and dynamic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.