Nanoconjugated antibiotics can be regarded as next-generation drugs as they possess remarkable potential to overcome multidrug resistance in pathogenic bacteria. Iron oxide nanoparticles (IONPs) have been extensively used in the biomedical field because of their biocompatibility and magnetic properties. More recently, IONPs have been investigated as potential nanocarriers for antibiotics to be magnetically directed to/recovered from infection sites. Here, we conjugated the “last-resort” glycopeptide antibiotic teicoplanin to IONPs after surface functionalization with (3-aminopropyl) triethoxysilane (APTES). Classical microbiological methods and fluorescence and electron microscopy analysis were used to compare antimicrobial activity and surface interactions of naked IONPs, amino-functionalized NPs (NP-APTES), and nanoconjugated teicoplanin (NP-TEICO) with non-conjugated teicoplanin. As bacterial models, differently resistant strains of three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis) and a Gram-negative representative (Escherichia coli) were used. The results indicated that teicoplanin conjugation conferred a valuable and prolonged antimicrobial activity to IONPs toward Gram-positive bacteria. No antimicrobial activity was detected using NP-TEICO toward the Gram-negative E. coli. Although IONPs and NP-APTES showed only insignificant antimicrobial activity in comparison to NP-TEICO, our data indicate that they might establish diverse interaction patterns at bacterial surfaces. Sensitivity of bacteria to NPs varied according to the surface provided by the bacteria and it was species specific. In addition, conjugation of teicoplanin improved the cytocompatibility of IONPs toward two human cell lines. Finally, NP-TEICO inhibited the formation of S. aureus biofilm, conserving the activity of non-conjugated teicoplanin versus planktonic cells and improving it toward adherent cells.
In recent years, antimicrobial photodynamic therapy (aPDT) has received increasing attention as a promising tool aimed at both treating microbial infections and sanitizing environments. Since biofilm formation on biological and inert surfaces makes difficult the eradication of bacterial communities, further studies are needed to investigate such tricky issue. In this work, a panel of 13 diaryl-porphyrins (neutral, mono- and di-cationic) was taken in consideration to photoinactivate Pseudomonas aeruginosa. Among cationic photosensitizers (PSs) able to efficiently bind cells, in this study two dicationic showed to be intrinsically toxic and were ruled out by further investigations. In particular, the dicationic porphyrin (P11) that was not toxic, showed a better photoinactivation rate than monocationic in suspended cells. Furthermore, it was very efficient in inhibiting the biofilms produced by the model microorganism Pseudomonas aeruginosa PAO1 and by clinical strains derived from urinary tract infection and cystic fibrosis patients. Since P. aeruginosa represents a target very difficult to inactivate, this study confirms the potential of dicationic diaryl-porphyrins as photo-activated antimicrobials in different applicative fields, from clinical to environmental ones.
Synthetic derivatives are currently used instead of pigments in many applicative fields, from food to feed, from pharmaceutical to diagnostic, from agronomy to industry. Progress in organic chemistry allowed to obtain rather cheap compounds covering the whole color spectrum. However, several concerns arise from this chemical approach, as it is mainly based on nonrenewable resources such as fossil oil, and the toxicity or carcinogenic properties of products and/or precursors may be harmful for personnel involved in the productive processes. In this scenario, microorganisms and their pigments represent a colorful world to discover and reconsider. Each living bacterial strain may be a source of secondary metabolites with peculiar functions. The aim of this review is to link the physiological role of bacterial pigments with their potential use in different biotechnological fields. This enormous potential supports the big challenge for the development of strategies useful to identify, produce, and purify the right pigment for the desired application. At the end of this ideal journey through the world of bacterial pigments, the attention will be focused on melanin compounds, whose production relies upon different techniques ranging from natural producers, heterologous hosts, or isolated enzymes. In a green workflow, the microorganisms represent the starting and final point of pigment production.
In recent years, antimicrobial Photodynamic Therapy (aPDT) gained increasing attention for its potential to inhibit the growth and spread of microorganisms, both as free-living cells and/or embedded in biofilm communities. In this scenario, compounds belonging to the family of boron-dipyrromethenes (BODIPYs) represent a very promising class of photosensitizers for applications in antimicrobial field. In this study, twelve non-ionic and three cationic BODIPYs were assayed for the inactivation of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. As expected, S. aureus showed to be very sensitive to BODIPYs and mild conditions were sufficient to reach good rates of photoinactivation with both neutral and monocationic ones. Surprisingly, one neutral compound (named B9 in this study) resulted the best BODIPY to photoinactivate P. aeruginosa PAO1. The photoinactivation of C. albicans was reached with both neutral and mono-cationic BODIPYs. Furthermore, biofilms of the three model microorganisms were challenged with BODIPYs in light-based antimicrobial technique. S. aureus biofilms were successfully inhibited with milder conditions than those applied to P. aeruginosa and C. albicans. Notably, it was possible to eradicate 24-h-old biofilms of both S. aureus and P. aeruginosa. In conclusion, this study supports the potential of neutral BODIPYs as pan-antimicrobial PSs. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.