Non-invasive foetal electrocardiography (fECG) continues to be an open topic for research. The development of standard algorithms for the extraction of the fECG from the maternal electrophysiological interference is limited by the lack of publicly available reference datasets that could be used to benchmark different algorithms while providing a ground truth for foetal heart activity when an invasive scalp lead is unavailable. In this work, we present the Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research (NInFEA), the first open-access multimodal early-pregnancy dataset in the field that features simultaneous non-invasive electrophysiological recordings and foetal pulsed-wave Doppler (PWD). The dataset is mainly conceived for researchers working on fECG signal processing algorithms. The dataset includes 60 entries from 39 pregnant women, between the 21st and 27th week of gestation. Each dataset entry comprises 27 electrophysiological channels (2048 Hz, 22 bits), a maternal respiration signal, synchronised foetal trans-abdominal PWD and clinical annotations provided by expert clinicians during signal acquisition. MATLAB snippets for data processing are also provided.
Pulsed-Wave Doppler (PWD) is a diagnostic ultrasound technique widely used for fetal heart rate monitoring. Fetal PWD is particularly challenging since, beyond being intrinsically operator-dependent, different issues related to the fetal heart size, the fetal movements and the ultrasound artifacts appear. In long PWD recordings, the signal segments completely meaningful for a morphological analysis, i.e. including a readable atrial and ventricular activity, are then limited in number and duration. In this work, an approach for the automatic detection of the meaningful fetal cardiac activity from PWD video recordings is presented and evaluated, using the annotations made by an expert cardiologist. It consists of the video pre-processing for image thresholding, filtering and envelope extraction by edge detection, and a supervised classification stage. A dataset including 30 signals from 17 pregnant women was adopted, extracting from it multiple segments, including different quality recordings. A supervised classification approach for the detection of the signal segments completely meaningful for a morphological analysis was then applied, revealing an accuracy greater than 99%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.