Pearl millet (Pennisetum glaucum (L.) R. Br.) is an important staple cereal cultivated in the arid and semi-arid tropics of Asia and Africa, regions severely affected by malnutrition. Knowledge about the extent of genetic variability and patterns of agro-morphological variation in local germplasm from a target region is an important prerequisite for efficient crop improvement. To assess the potential of Sudanese pearl millet landraces as sources of desirable traits for pearl millet improvement including biofortification, a total of 225 accessions were evaluated in Sudan at three locations for agro-morphological traits and at one location for grain mineral nutrient contents (Fe, Zn, Ca, P, K, Mg, Mn, S, Na, Cu and b-carotene). Genetic variation was highly significant, but relatively limited for some agro-morphological traits (62-78 d to flowering, 119-188 cm plant height and 16-34 cm panicle length), pointing to the potential usefulness of a targeted diversification for these traits. Self-pollinated grain micronutrient contents showed a wide variation: 19.7 -86.4 mg/kg for Fe and 13.5 -82.4 mg/kg for Zn. Significant and positive correlations among most of the nutritional traits were observed; therefore, enhancement of the concentrations of some nutrients will lead to the improvement of other related nutrients. No significant associations were observed between the nutritional and agro-morphological traits, indicating good prospects for simultaneous improvement of both trait categories. No clear patterns of geographic differentiation for specific traits were detected for the Sudanese pearl millet. Nutrient-rich accessions were identified and those with acceptable agro-morphological traits are encouraging materials for future pearl millet biofortification programmes in Sudan.
Pearl millet [Cenchrus americanus (L.) Morrone syn. Pennisetum glaucum (L.) R. Br.] is one of the most extensively cultivated cereals in the world, after wheat (Triticum aestivum L.), maize (Zea mays L.), rice (Oryza sativa L.), barley (Hordeum vulgare L.), and sorghum [Sorghum bicolor (L.) Moench]. It is the main component of traditional farming systems and a staple food in the arid and semiarid regions of Africa and southern Asia. However, its genetic improvement is lagging behind other major cereals and the yield is still low. Genotyping-by-sequencing (GBS)-based single-nucleotide polymorphism (SNP) markers were screened on a total of 398 accessions from different geographic regions to assess genetic diversity, population structure, and linkage disequilibrium (LD). By mapping the GBS reads to the reference genome sequence, 82,112 genome-wide SNPs were discovered. The telomeric regions of the chromosomes have the higher SNP density than in pericentromeric regions. Model-based clustering analysis of the population revealed a hierarchical genetic structure of six subgroups that mostly overlap with the geographic origins or sources of the genotypes but with differing levels of admixtures. A neighbor-joining phylogeny analysis revealed that germplasm from western Africa rooted the dendrogram with much diversity within each subgroup. Greater LD decay was observed in the west-African subpopulation than in the other subpopulations, indicating a long history of recombination among landraces. Also, genome scan of genetic differentiatation detected different selection histories among subpopulations. These results have potential application in the development of genomic-assisted breeding in pearl millet and heterotic grouping of the lines for improved hybrid performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.