In prokaryotes and eukaryotes mobile genetic elements frequently disrupt the highly conservative structures of chromosomes, which are responsible for storage of genetic information. The factors determining the site for integration of such elements are still unknown. Transfer RNA (tRNA) genes are associated in a highly significant manner with different putative mobile genetic elements in the cellular slime mold Dictyostelium discoideum. These results suggest that tRNA genes in D. discoideum, and probably tRNA genes generally in lower eukaryotes, may function as genomic landmarks for the integration of different transposable elements in a strictly position-specific manner.
The haploid genome of the cellular slime mold Dictyostelium discoideum contains at least 18 gene copies coding for a tRNAGlu(GAA). Using a combination of parasexual genetic analysis and molecular biology techniques, 14 of the 18 individual members of this gene family could be assigned to particular linkage groups. According ot this analysis four tRNAGlu genes are located on group I (C, H, I, K), two genes on group II (D,J), seven genes on either group III or VI (A, B, E, F, L, M, N), and one gene on group VII (G). Eight of the tRNAGlu(GAA) genes have been cloned and characterized. All genes are identical in that part of the gene which corresponds to the mature tRNA, thus representing true nonallelic members of this gene family. Different members of this gene family can be distinguished from each other because they reside on restriction fragments of different lengths and because each gene contains unique 5'- and 3'-flanking regions. Nevertheless, a certain degree of sequence conservation within these flanking regions is apparent for members of this gene family. According to in vivo expression analyses of individual genes in Saccharomyces cerevisiae, all isolated tRNAGlu(GAA) copies represent functional transcription units.
Through computer analysis of a human cytomegalovirus (HCMV) genomic region, previously identified to be homologous to human genomic DNA, an element showing significant similarity to the 3'-internal control region (3'-ICR or B-block) of a eukaryotic RNA polymerase III promoter could be detected. This region-located on the EcoRI b fragment within the UL segment of the viral genome of HCMV strain AD 169-cannot be transcribed in vitro in an RNA polymerase III specific transcription system. However, this part of the viral genome is able to compete for components of the RNA polymerase III transcription complex as shown in template exclusion experiments and by gel retardation assays. Two different synthetic oligonucleotides complementary to the 3'-ICR and to nucleotides located immediately downstream of this promoter element can anneal specifically to a HCMV-encoded ribonucleic acid (termed CMER) synthesized in human foreskin fibroblasts (HFF) late in virus replication. As a consequence of identifying the transcription initiation point by primer extension analyses the position of the 5'-internal control region (5'-ICR or A-block) of the CMER gene could be uncovered. Both identified control regions (the A-block as well as the B-block) of the transcription unit exhibit significant similarities to corresponding regulatory elements of other class III genes, including virus encoded class III genes. Initiation of in vivo transcription occurs 15 nucleotides upstream of the 5'-border of the 5'-ICR and the two non-contiguous gene internal promoter elements are separated by 79 nucleotides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.