Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients.
Stable gene expression in mammalian cells is a prerequisite for many in vitro and in vivo experiments. However, either the integration of plasmids into mammalian genomes or the use of retro-/lentiviral systems have intrinsic limitations. The use of transposable elements, e.g. the Sleeping Beauty system (SB), circumvents most of these drawbacks (integration sites, size limitations) and allows the quick generation of stable cell lines. The integration process of SB is catalyzed by a transposase and the handling of this gene transfer system is easy, fast and safe. Here, we report our improvements made to the existing SB vector system and present two new vector types for robust constitutive or inducible expression of any gene of interest. Both types are available in 16 variants with different selection marker (puromycin, hygromycin, blasticidin, neomycin) and fluorescent protein expression (GFP, RFP, BFP) to fit most experimental requirements. With this system it is possible to generate cell lines from stable transfected cells quickly and reliably in a medium-throughput setting (three to five days). Cell lines robustly express any gene-of-interest, either constitutively or tightly regulated by doxycycline. This allows many laboratory experiments to speed up generation of data in a rapid and robust manner.
Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (∼90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements.
Chromosomal rearrangements of the human MLL gene are associated with high-risk pediatric, adult and therapy-associated acute leukemias. These patients need to be identified, treated appropriately and minimal residual disease was monitored by quantitative PCR techniques. Genomic DNA was isolated from individual acute leukemia patients to identify and characterize chromosomal rearrangements involving the human MLL gene. A total of 760 MLL-rearranged biopsy samples obtained from 384 pediatric and 376 adult leukemia patients were characterized at the molecular level. The distribution of MLL breakpoints for clinical subtypes (acute lymphoblastic leukemia, acute myeloid leukemia, pediatric and adult) and fused translocation partner genes (TPGs) will be presented, including novel MLL fusion genes. Combined data of our study and recently published data revealed 104 different MLL rearrangements of which 64 TPGs are now characterized on the molecular level. Nine TPGs seem to be predominantly involved in genetic recombinations of MLL: AFF1/AF4, MLLT3/ AF9, MLLT1/ENL, MLLT10/AF10, MLLT4/AF6, ELL, EPS15/AF1P, MLLT6/AF17 and SEPT6, respectively. Moreover, we describe for the first time the genetic network of reciprocal MLL gene fusions deriving from complex rearrangements.
Activation of the MAPK signaling pathway has been shown to be a unifying molecular feature in pilocytic astrocytoma (PA). Genetically, tandem duplications at chromosome 7q34 resulting in KIAA1549-BRAF fusion genes constitute the most common mechanism identified to date. To elucidate alternative mechanisms of aberrant MAPK activation in PA, we screened 125 primary tumors for RAF fusion genes and mutations in KRAS, NRAS, HRAS, PTPN11, BRAF and RAF1. Using microarray-based comparative genomic hybridization (aCGH), we identified in three cases an interstitial deletion of ~2.5 Mb as a novel recurrent mechanism forming BRAF gene fusions with FAM131B, a currently uncharacterized gene on chromosome 7q34. This deletion removes the BRAF N-terminal inhibitory domains, giving a constitutively active BRAF kinase. Functional characterization of the novel FAM131B-BRAF fusion demonstrated constitutive MEK phosphorylation potential and transforming activity in vitro. In addition, our study confirmed previously reported BRAF and RAF1 fusion variants in 72% (90/125) of PA. Mutations in BRAF (8/125), KRAS (2/125) and NF1 (4/125) and the rare RAF1 gene fusions (2/125) were mutually exclusive with BRAF rearrangements, with the exception of two cases in our series that concomitantly harbored more than one hit in the MAPK pathway. In summary, our findings further underline the fundamental role of RAF kinase fusion products as a tumor-specific marker and an ideally suited drug target for PA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.