Objectives. Soft denture liners provide a favorable environment for adhesion and colonization of microorganisms. This in vitro study aimed to examine the efficacy of different concentrations of copper oxide nanoparticles (CuO NPs) incorporation into soft denture liner on the biofilm formation of the microbial species. Methods. Field Emission Scanning Electron Microscopy (FESEM) images from NPs were recorded. Antifungal susceptibility testing of CuO NPs against five standard strains of Candida albicans (CBS 10261, 1905, 1912, 1949, 2730), Streptococcus mutans (ATCC35668), Streptococcus sobrinus (ATCC27607), and Streptococcus salivarius (ATCC9222) was performed by the broth microdilution method with the Clinical and Laboratory Standards Institute reference method. The biofilm inhibition percentages of CuO NPs on the soft denture liners were determined by XTT assay. Results. The characterization of CuO NPs by scanning electron microscope (SEM) analyses confirmed the synthesis of NPs with appropriate structure and size with a mean diameter of 18.3 ± 9.1 nm. The CuO NPs successfully inhibited the growth of the tested standard strains of C. albicans and Streptococcus spp. at concentrations ranging from 64 to 128 µg mL−1. Indeed, incorporation of CuO NPs at a concentration of 500 µg mL−1 into the soft denture liners exhibited a significant activity (75%) in inhibition of C. albicans. biofilm formation in a dose-dependent manner. The biofilm formation of C. albicans in the presence of CuO NPs was lower than Streptococcus spp. in comparison with the control group (
p
<
0.05
). Conclusion. Incorporation of CuO NPs significantly decreased the colonization and plaque formation of the oral pathogens, especially C. albicans accumulation. These NPs may be useful as a promising agent for the antimicrobial management of soft denture liner materials.
Background:A precise impression is mandatory to obtain passive fit in implant-supported prostheses. The aim of this study was to compare the accuracy of three impression materials in both parallel and nonparallel implant positions.Materials and Methods:In this experimental study, two partial dentate maxillary acrylic models with four implant analogues in canines and lateral incisors areas were used. One model was simulating the parallel condition and the other nonparallel one, in which implants were tilted 30° bucally and 20° in either mesial or distal directions. Thirty stone casts were made from each model using polyether (Impregum), additional silicone (Monopren) and vinyl siloxanether (Identium), with open tray technique. The distortion values in three-dimensions (X, Y and Z-axis) were measured by coordinate measuring machine. Two-way analysis of variance (ANOVA), one-way ANOVA and Tukey tests were used for data analysis (α = 0.05).Results:Under parallel condition, all the materials showed comparable, accurate casts (P = 0.74). In the presence of angulated implants, while Monopren showed more accurate results compared to Impregum (P = 0.01), Identium yielded almost similar results to those produced by Impregum (P = 0.27) and Monopren (P = 0.26).Conclusion:Within the limitations of this study, in parallel conditions, the type of impression material cannot affect the accuracy of the implant impressions; however, in nonparallel conditions, polyvinyl siloxane is shown to be a better choice, followed by vinyl siloxanether and polyether respectively.
Objectives: This study aimed to evaluate the effect of different concentrations of titanium dioxide (TiO 2 ) and copper oxide (CuO) nanoparticles on the water sorption and solubility of heat-cured polymethyl methacrylate (PMMA).Materials and Methods: Fifty disc-shaped specimens (10 × 2 mm) of heat-cured PMMA were prepared and divided into five groups (n = 10) to be modified with 2.5 wt.% or 7.5 wt.% of either TiO 2 or CuO nanoparticles. One group was left unmodified, serving as the control group. Water sorption and solubility were measured by weighing the specimens before and after immersion in distilled water and desiccation. The data were analyzed by using one-way ANOVA and Tukey's post hoc test (α = .05).Results: The 2.5 wt.% CuO nanoparticles significantly decreased the water sorption (p = .016), but did not change the water solubility (p = .222) compared with the control group. The 7.5 wt.% CuO and both concentration of TiO 2 nanoparticles did not change the water sorption, but significantly increased the solubility of heatcured PMMA (p ≤ .05).Conclusion: Adding 2.5 wt.% CuO nanoparticles to heat-cured PMMA decreases the water sorption; although, it has no significant effect on the solubility. Likewise, 2.5 and 7.5 wt.% TiO 2 and 7.5 wt.% CuO do not affect the water sorption, but increase the water solubility of heat-cured PMMA.Clinical Significance: Reinforcing the heat-cured PMMA denture base resin materials with the right concentration and type of nanoparticles can decrease the water sorption of resin base materials, and consequently can influence the durability of dentures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.