Background: Plasma and urine levels of the potent vasodilator Ang-(1-7) are elevated in mid and late pregnancy and are correlated with elevated placental angiogenesis, fetal blood flow, and rapid fetal growth. We hypothesized that Ang-(1-7), its receptor (Mas1) and the enzymes involved in Ang-(1-7) production (ACE2 and Membrane metallo-endopeptidase; MME) are down regulated in response to glucocorticoid administration contributing to IUGR. Methods: Pregnant female Sprague-Dawley rats were injected with dexamethasone (DEX; 0.4 mg/kg/day) starting from 14 day gestation (dg) till sacrifice at 19 or 21 dg while control groups were injected with saline (n = 6/group). The gene and protein expression of ACE2, MME, Ang-(1-7) and Mas1 receptor in the placental labyrinth (LZ) and basal zones (BZ) were studied.
Ouabain is a cardiac glycoside produced in the adrenal glands and hypothalamus. It affects the function of all cells by binding to Na+/K+-ATPase. Several lines of evidence suggest that endogenous ouabain could be involved in the pathogenesis of essential (particularly, salt-sensitive) hypertension. However, information regarding the postulated hypertensive effect of the long-term administration of low-dose exogenous ouabain is inconsistent. This study was designed to help settle this controversy through the use of telemetric monitoring of arterial blood pressure and to elucidate the ouabain-induced alterations that could either promote or prevent hypertension. Ouabain (63 and 324 µg/kg/day) was administered subcutaneously to male Wistar rats. Radiotelemetry was used to monitor blood pressure, heart rate and measures of cardiovascular variability and baroreflex sensitivity. The continuous administration of ouabain for 3 months did not elevate arterial blood pressure. The low-frequency power of systolic pressure variability, urinary excretion of catecholamines, and cardiovascular response to restraint stress and a high-salt diet as well as the responsiveness to α1-adrenergic stimulation were all unaltered by ouabain administration, suggesting that the activity of the sympathetic nervous system was not increased. However, surrogate indices of cardiac vagal nerve activity based on heart rate variability were elevated. Molecular remodeling in mesenteric arteries that could support the development of hypertension (increased expression of the genes for the Na+/Ca2+ exchanger and Na+/K+-ATPase α2 isoform) was not evident. Instead, the plasma level of vasodilatory calcitonin gene-related peptide (CGRP) significantly rose from 55 (11, SD) in the control group to 89 (20, SD) pg/ml in the ouabain-treated rats (PTukey's = 18.10−5). These data show that long-term administration of exogenous ouabain does not necessarily cause hypertension in rodents. The augmented parasympathetic activity and elevated plasma level of CGRP could be linked to the missing hypertensive effect of ouabain administration.
The Editors-in-Chiefare issuing an Expression of Concern for this article [1]. After publication concerns were raised with respect to the specificity and validity of the placental Ang-(1-7) levels assessed by Western blotting and reported in Fig. 4 because Ang-(1-7), which is less than 1 kDa, was detected as a 34 kDa protein. All authors disagree with this Expression of Concern.
Successful adaptation to passive hyperthermia requires continual adjustment of circulation, which is mediated mainly by the autonomic nervous system. The goal of this study was to explore the alterations in spontaneous cardiovagal baroreflex sensitivity (BRS) during exposure to a hot environment. To continuously follow changes in core body temperature (Tc), haemodynamics, and BRS, male Wistar-Kyoto rats were implanted with telemetric transmitters. BRS at an ambient temperature of 23 °C was not steady but oscillated with a maximum power in the range of 0.02–0.2 Hz. Exposure to hot air immediately shifted the distribution of BRS to higher values, although Tc remained unchanged (37.2 (0.3) °C), and the average BRS changed from 1.3 (0.3) to 3 (1.4) ms.mmHg −1 , p < 0.0001. The degree of initial cardiovagal baroreflex sensitization explained 57% of the variability in the time to the onset of arterial pressure decline (p = 0.0114). With an increasing Tc (>38.8 (0.6) °C), BRS non-linearly declined, but haemodynamic parameters remained stable even above a Tc of 42 °C when the cardiovagal baroreflex was virtually non-operative. Abrupt full desensitization of the cardiovagal baroreflex with a muscarinic blocker did not induce arterial pressure decline. Our data indicate that a progressive decrease in BRS during passive hyperthermia does not induce haemodynamic instability. The positive association between initial cardiovagal baroreflex sensitization and the time to the onset of arterial pressure decline may reflect the potential protective role of parasympathetic activation during exposure to a hot environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.