We investigate properties of perpendicular anisotropy magnetic tunnel junctions (MTJs) with a recording structure of MgO/CoFeB/Ta/CoFeB/MgO down to junction diameter (D) of 11 nm from 56 nm. Thermal stability factor (Δ) of MTJ with the structure starts to decrease at D = 30 nm. D dependence of Δ agrees well with that expected from magnetic properties of blanket film taking into account the change in demagnetizing factors of MTJs. Intrinsic critical current (IC0) reduces with decrease of D in the entire investigated D range. A ratio of Δ to IC0 shows continuous increase with decrease of D down to 11 nm.
A non-volatile memory element called a perpendicular-anisotropy magnetic tunnel junction was fabricated using CoFeB/MgO/CoFeB film stack technology. It exhibits two stable resistance values, high or low, depending on the relative directions of the magnetizations of the two ferromagnetic CoFeB layers. After being programmed into the high resistance state with a current injection scheme based on the spin transfer torque theory, the tunnel junction was exposed to 15-MeV Si ions under different voltage stress conditions. The tested structure remained in the programmed high resistance state after being bombarded with 10-100 Si ions, even under the stressed situations. A time-domain analysis proved that this result is due to the perfect immunity of the tested magnetic tunnel junction to single event upsets. Some degradation in resistance due to the heavy-ion irradiation was detected through a precise parameter analysis based on a tunneling theory but it was negligibly small (1%). There were no statistically significant changes in the thermal stability factor before and after irradiation, and this means the long-term retention properties remained unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.