In Si and FeSi production, the main Si source is SiO 2 , in the form of quartz. Reactions with SiO 2 generate SiO gas that further reacts with SiC to Si. During heating, quartz will transform to other SiO 2 modifications with cristobalite as the stable high-temperature phase. Transformation to cristobalite is a slow process. Its rate has been investigated for several industrial quartz sources and has been shown to vary considerably among the different quartz types. Other differences in behavior during heating between these quartz sources, such as softening temperature and volume expansion, have also been studied. The quartz-cristobalite ratio will affect the rate of reactions involving SiO 2 . The industrial consequences and other implications of the observed difference between quartz types are discussed. Initial studies of industrial quartz were published by Ringdalen et al. In the current work, a new experimental method has been developed, and an investigation of several new quartz sources has confirmed the earlier observed large variation between different sources. The repeatability of the data has been studied and the effect of gas atmosphere investigated. The results from the earlier work are included as a basis for the discussion.
The charge for silicomangansese production consists of manganese ore (often mixed with ferromanganese slag) dolomite or calcite, quartz, and in some cases, other additions. These materials have different melting properties, which have a strong effect on reduction and smelting reactions in the production of a silicomanganese alloy. This article discusses properties of Assman, Gabonese, and Companhia Vale do Rio Doce (CVRD) ores, CVRD sinter and highcarbon ferromanganese (HC FeMn) slag, and their change during silicomanganese production. The melting and reduction temperatures of these manganese sources were measured in a carbon monoxide atmosphere, using the sessile drop method and a differential thermal analysis/ thermogravimetric analysis. Equilibrium phases were analyzed using FACTSage (CRCT, Montreal, Canada and GTT, Aachen, Germany) software. Experimental investigations and an analysis of equilibrium phases revealed significant differences in the melting behavior and reduction of different manganese sources. The difference in smelting of CVRD ore and CVRD sinter was attributed to a faster reduction of sinter by the graphite substrate and carbon monoxide. The calculation of equilibrium phases in the reduction process of manganese ores using FACTSage correctly reflects the trends in the production of manganese alloys. The temperature at which the manganese oxide concentration in the slag was reduced below 10 wt pct can be assigned to the top of the coke bed in the silicomanganese furnace. This temperature was in the range 1823 K to 1883 K (1550°C to 1610°C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.