The validity of applying laboratory pyrolysis experiments to simulating the maturation of organic matter in sedimentary basins has been vigorously debated. We report here results from the generation of hydrocarbons of low relative molecular mass (Mr) in both hydrous and dry pyrolysis. A principal difference is that under dry conditions in the presence of montmorillonite, catalysis occurs with respect to generation of low-Mr hydrocarbons but no such effect is evident for hydrous conditions, probably because of a reduction in the clay's acidity. In addition, olefins which were previously reported as not being present in the products of hydrous pyrolyses were found to be produced in the C2-C6 range in comparable amounts under both hydrous and dry pyrolyses at 300 degrees C and may form in the course of kerogen catagenesis in nature but disappear with geologic time due to their instability. These studies have relevance to understanding the interactions between kerogen and minerals in sedimentary rocks and to processes in the formation of natural gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.