Multi-channel seismic reflection data and borehole information were used to study the structure and stratigraphy of the Levantine basin, offshore Israel. A new, 2D seismic survey that covers the southeastern Mediterranean Sea from the Israeli coast to the Eratosthenes Seamount shows the entire Phanerozoic sedimentary fill down to a depth of 14-16 km. The basin-fill is subdivided into six seismo-stratigraphic units interpreted as low-order, major depositional cycles (supersequences A-F). Correlation and mapping of these units allowed an investigation of the geological history of the basin and the analysis of two important tectonic phases: Neotethyan rifting, and Syrian Arc inversion and contraction. The Neotethyan rifting phase is recorded by the strata of supersequences A and B. Faulting took place during the Anisian (Mid-Triassic), continued through the Liassic and ceased during the Mid-Jurassic. The basin opened in a NW-SE direction, between the Eratosthenes Seamount and the Levant margin of the Arabian Massif, at an angle of about 30 ~ to the present-day shoreline. No indications for sea-floor spreading were found in the present study. Late Triassic to Liassic volcanic rocks of assumed intraplate origin accumulated in the northeastern part of the basin. It is hypothesized that the basin originated as an intracontinental rift associated with the nucleation of an oceanic spreading centre, but reached only an early magmatic phase. An inversion and contraction phase, associated with closing of the Neotethyan ocean system, is recorded by supersequences C and D. The contractional structures of the Syrian Arc extend in a wide and elevated fold belt along the eastern edge of the deep-marine basin. These structures were formed by the inversion of pre-existing normal faults. The folding occurred in several pulses starting in the Senonian and ending in the Miocene. The western limit of the main fold belt, located 50-70 km west of the coastline, is defined by a transition in crustal properties. Supersequences E and F record the Late Cenozoic history of the basin. A Messinian, evaporitic basin was limited to the east by the elevated and uplifted Syrian Arc fold belt composed of older, Oligocene to Mid-Miocene strata. During highstand episodes, the Messinian evaporites were deposited on the entire slope and within canyons incised into the shelf. High sedimentation rates of Nilotic and locally derived sediments during the Plio-Pleistocene resulted in the development of extensive submarine deltas and basinward progradation of the Levant shelf break.
At the time of the opening of the Tethys Ocean the northern edge of Gondwana was affected by several rifting events. In this study, we used data from deep exploration wells, seismic profiles, and seismic depth maps to reconstruct the pattern of Tethyan rifting in the Levant region and to investigate its effects on the evolution of the Levant crust.The results show a several hundred kilometre wide deformation zone, comprised of graben and horst structures that extend from the inner part of the Levant to the marine basin offshore Israel. The structures are dominated by sets of NE–SW and NNE–SSW oriented normal faults with vertical offsets in the range of 1–8 km. Rifting was associated with a NW–SE direction of extension, approximately perpendicular to the present-day Mediterranean coast. Faulting activity progressed over a period of 120 Ma and took place in three main pulses: Late Palaeozoic (Carboniferous to Permian); Middle to Late Triassic; and Early to Middle Jurassic. The last, and the most intense, tectonic phase post-dates the activity in other rifted margins of northern Gondwana.Rifting was associated with the modification and stretching of the Levant crust. Our results demonstrate an extension discrepancy between the brittle deformation in the upper crust and the amount of total crustal thinning. Seismic reflection data shows that the Levant Basin lacks the characteristics of typical rifted margins, either volcanic or non-volcanic. The evolution of the basin may be explained by depth-dependant stretching, associated with the upwelling of divergent mantle flow and removal of lower crustal layers by decoupling along deep detachment faults.
The Dead Sea is surrounded by chemical and detrital sediments that were deposited in its larger precursor lakes, Lake Samra and Lake Lisan. The sedimentary history of these lakes was recon-structed by means of 230Th/234U ages of 30 samples, mostly of argonite laminae, from 8 columnar sections up to 110 km apart. The general validity of the ages was demonstrated by subjecting them to tests of internal isotopic consistency, agreement with stratigraphic order, and concordance with 14C ages. In the south, only the part of the Samra Formation older than 170,000 yr is exposed, while the aragonite-detritus rhythmites found in the central and northern region are generally younger than 120,000 yr. The Lisan Formation started accumulating about 63,000 yr B.P., with the clay and aragonite beds in the south-central area reflecting a rise in water level to at least −280 m. The upper part of the Lisan Formation, the aragonite-rich White Cliff Member, started accumulating about 36,000 yr B.P. The lake probably reached its highest level sometime after this, based on the ages of Lisan sediments preserved in the southernmost reaches of the basin.
Mount Sedom is the surface expression of a salt diapir that has emerged since the Pleistocene in the southwestern part of the Dead Sea basin. Milestones in the uplift history of the Sedom salt diapir since its inception were deduced from angular and erosional unconformities, thickness variations, caprock formation, chemistry and isotope composition of lacustrine aragonite, cave morphology, precise leveling, and satellite geodesy. Thickness variations of the overburden observed in transverse seismic lines suggest that signifi cant growth of the Sedom diapir may have initiated only after this thickness exceeded ~2400 m in the Late Pliocene. The formation of the caprock signifi es the arrival of the Sedom diapir from depth to the dissolution level between 300,000-100,000 yr B.P. During this period and later, angular and erosional unconformities in the upper part of the overburden near Mount Sedom are attributed to the piercing diapir. Rapid solution of rock salt from parts of Mount Sedom inundated by Lake Lisan after ca. 40,000 yr B.P. is inferred from Na/Ca ratios in aragonite and their relation to δ 13 C. On the mountain itself, the older parts (70,000-43,000 yr B.P.) of the lacustrine Lisan Formation are missing. The top of the preserved sediments is covered by alluvial sediments that must have been deposited when the elevation of Mount Sedom was not higher than 265 m below sea level (mbsl) at ca. 14,000 yr B.P. The present elevation of these sediments at 190 mbsl indicates an average uplift rate of ~5 mm/yr over the past 14,000 yr. Similar uplift rates of 6-9 mm/yr are inferred for
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.