Biomaterials play a critical role in modern medicine as surgical guides, implants for tissue repair, and as drug delivery systems. The emerging paradigm of precision medicine exploits individual patient information to tailor clinical therapy. While the main focus of precision medicine to date is the design of improved pharmaceutical treatments based on “‐omics” data, the concept extends to all forms of customized medical care. This includes the design of precision biomaterials that are tailored to meet specific patient needs. Additive manufacturing (AM) enables free‐form manufacturing and mass customization, and is a critical enabling technology for the clinical implementation of precision biomaterials. Materials scientists and engineers can contribute to the realization of precision biomaterials by developing new AM technologies, synthesizing advanced (bio)materials for AM, and improving medical‐image‐based digital design. As the field matures, AM is poised to provide patient‐specific tissue and organ substitutes, reproducible microtissues for drug screening and disease modeling, personalized drug delivery systems, as well as customized medical devices.
Polymeric nanoparticles (NPs) are versatile and effective drug delivery systems (DDS) that can be produced via nanoprecipitation of block copolymers. Yet, translation into clinical products has been limited. Thus, methods for NP production that enable rapid formulation screening and continuous production are needed. Toward this end, we engineered a coaxial jet mixer (CJM) for controlled and continuous nanoprecipitation in flow. The CJM enabled continuous assembly of poly(ethylene glycol)-block-polylactide NPs with various co-solvents and was compared to batch nanoprecipitation. Other fabricated microfluidic devices were suitable for small scale formulation screening but more limited in scalable and continuous processes. In contrast, the CJM was tolerant to all water-miscible solvents tested, enabled formulation screening, and scalable production of NPs and DDS. In total, the CJM provides a complementary approach to the process engineering of polymeric NP formation that can be used broadly for formulation screening and production. K E Y W O R D Sbiomedical engineering, controlled release formulations, microfluidics, nanotechnology, self assembly
Ink engineering is a fundamental area of research within additive manufacturing (AM) that designs next‐generation biomaterials tailored for additive processes. During the design of new inks, specific requirements must be considered, such as flowability, postfabrication stability, biointegration, and controlled release of therapeutic molecules. To date, many (bio)inks have been developed; however, few are sufficiently versatile to address a broad range of applications. In this work, a universal nanocarrier ink platform is presented that provides tailored rheology for extrusion‐based AM and facilitates the formulation of biofunctional inks. The universal nanocarrier ink (UNI) leverages reversible polymer–nanoparticle interactions to form a transient physical network with shear‐thinning and self‐healing properties engineered for direct ink writing (DIW). The unique advantage of the material is that a range of functional secondary polymers can be combined with the UNI to enable stabilization of printed constructs via secondary cross‐linking as well as customized biofunctionality for tissue engineering and drug delivery applications. Specific UNI formulations are used for bioprinting of living tissue constructs and DIW of controlled release devices. The robust and versatile nature of the UNI platform enables rapid formulation of a broad range of functional inks for AM of advanced biomaterials.
Moldable hydrogels are increasingly used as injectable or extrudable materials in biomedical and industrial applications owing to their ability to flow under applied stress (shear‐thin) and reform a stable network (self‐heal). Nanoscale components can be added to dynamic polymer networks to modify their mechanical properties and broaden the scope of applications. Viscoelastic polymer–nanoparticle (PNP) hydrogels comprise a versatile and tunable class of dynamic nanocomposite materials that form via reversible interactions between polymer chains and nanoparticles. However, PNP hydrogel formation is restricted to specific interactions between select polymers and nanoparticles, resulting in a limited range of mechanical properties and constraining their utility. Here, a facile strategy to reinforce PNP hydrogels through the simple addition of α‐cyclodextrin (αCD) to the formulation is introduced. The formation of polypseudorotoxanes between αCD and the hydrogel components resulted in a drastic enhancement of the mechanical properties. Furthermore, supramolecular reinforcement of CD–PNP hydrogels enabled decoupling of the mechanical properties and material functionality. This allows for modular exchange of structural components from a library of functional polymers and nanoparticles. αCD supramolecular binding motifs are leveraged to form CD–PNP hydrogels with biopolymers for high‐fidelity 3D (bio)printing and drug delivery as well as with inorganic NPs to engineer magnetic or conductive materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.