Massive testing to detect SARS-CoV-2 is an imperious need in times of epidemic but also presents challenges in terms of its concretization. The use of saliva as an alternative to nasopharyngeal swabs (NPS) has advantages, being more friendly to the patient and not requiring trained health workers, so much needed in other functions. This study used a total of 452 dual samples (saliva and NPS) of patients suspected of having COVID-19 to compare results obtained for the different specimens when using RT-PCR of RNA extracted from NPS and saliva, as well as saliva directly without RNA extraction. SARS-CoV-2 was not detected in 13 saliva (direct) of the 80 positive NPS samples and in 16 saliva (RNA) of a total of 76 NPS positive samples. Sensitivity of detection of viral genes ORF1ab, E and N in saliva is affected differently and detection of these genes in saliva samples presents great variability when NPS samples present Ct-values above approximately 20, with sensitivities ranging from 76.3% to 86.3%. On average an increase in 7.3 Ct-values (average standard deviation of 4.78) is observed in saliva samples when compared to NPS. The use of this specimen should be carefully considered due to the false negative rate and the system used for detection may be also very relevant since the different viral genes are affected differently in terms of detection sensitivity using saliva.
The spatial patterns of chlorophyll a and bacteria were assessed in a temperate Atlantic tidal estuary during seasonal surveys, as well as in consecutive summer spring and neap tides. A box model approach was used to better understand spatial and temporal dynamics of these key estuarine descriptors. The Lima estuary (NW Portugal) was divided into boxes controlled by salinity and freshwater discharge and balance equations were derived for each variable, enabling the calculation of horizontal and vertical fluxes of plankton and, therefore, production or consumption rates. Chlorophyll a tended to burst within the oligohaline zone, whereas higher counts of bacteria were found in the mesohaline stretch. Whenever the water column was stratified, similar tide-independent trends were found for chlorophyll a and bacterial fluxes, with net growth in the upper less saline boxes, and consumption beneath the halocline. In the non-stratified upper estuary, other controls emerged for chlorophyll a and bacteria, such as nitrogen and carbon inputs, respectively. The presented results show that, while tidal hydrodynamics influenced plankton variability, production/consumption rates resulted from the interaction of additional factors, namely estuarine geomorphological characteristics and nutrient inputs. In complex estuarine systems, the rather simple box model approach remains a useful tool in the task of understanding the coupling between hydrodynamics and the behavior of plankton, emerging as a contribution toward the management of estuarine systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.