Bacterial resistance to the available marketed drugs has prompted the search of novel therapies; especially in regards of anti-virulence strategies that aim to make bacteria less pathogenic and/or decrease their probability to become resistant to therapy. Cinnamaldehyde is widely known for its antibacterial properties through mechanisms that include the interaction of this compound with bacterial cell walls. However, only a handful of studies have addressed its effects on bacterial virulence, especially when tested at sub-inhibitory concentrations. Herein, we show for the first time that cinnamaldehyde is bactericidal against Staphylococcus aureus and Enterococcus faecalis multidrug resistant strains and does not promote bacterial tolerance. Cinnamaldehyde actions were stronger on S. aureus as it was able to inhibit its hemolytic activity on human erythrocytes and reduce its adherence to latex. Furthermore, cinnamaldehyde enhanced the serum-dependent lysis of S. aureus. In vivo testing of cinnamaldehyde in Galleria mellonella larvae infected with S. aureus, showed this compound improves larvae survival whilst diminishing bacterial load in their hemolymph. We suggest that cinnamaldehyde may represent an alternative therapy to control S. aureus-induced bacterial infections as it presents the ability to reduce bacterial virulence/survival without promoting an adaptive phenotype.
Wound healing can be delayed following colonization and infection with the common bacterium Pseudomonas aeruginosa. While multiple therapies are used for their treatment, these are ineffective, expensive, and labour-intensive. Thus, there is an enormous unmet need for the treatment of infected wounds. Cinnamaldehyde, the major component of cinnamon oil, is well known for its antimicrobial properties. Herein, we investigated the effects of sub-inhibitory concentrations of cinnamaldehyde in the virulence of P. aeruginosa. We also assessed its healing potential in P. aeruginosa-infected mouse skin wounds and the mechanisms involved in this response. Sub-inhibitory concentrations of cinnamaldehyde reduced P. aeruginosa metabolic rate and its ability to form biofilm and to cause haemolysis. Daily topical application of cinnamaldehyde on P. aeruginosa-infected skin wounds reduced tissue bacterial load and promoted faster healing. Lower interleukin-17 (IL-17), vascular endothelial growth factor (VEGF) and nitric oxide levels were detected in cinnamaldehyde-treated wound samples. Blockage of transient receptor potential ankyrin 1, the pharmacological target of cinnamaldehyde, abrogated its healing activity and partially reversed the inhibitory actions of this compound on VEGF and IL-17 generation. We suggest that topical application of sub-inhibitory concentrations of cinnamaldehyde may represent an interesting approach to improve the healing of P. aeruginosa-infected skin wounds.
Apical sealing is essential for the success of paraendodontic surgery, so any procedure that may favor an adequate sealing of the apical remainder should be performed. The purpose of this study was to evaluate the influence of diode laser irradiation on the apical sealing of root-end cavities with MTA retrofillings. Root canals in twenty extracted human teeth were shaped with K-files and filled with gutta-percha. The apexes were cut off and root-end preparations were performed. The roots were divided randomly in 2 groups. Group 1 (ten specimens) was retrofilled with MTA. Group 2 was irradiated with diode laser, with 1 W for 20 seconds, on the apical surface and root end cavity before retrofilling with MTA. The specimens had their external surfaces impermeabilized with cyanoacrylate, except for the apical surface, and were then immersed in 1% rhodamine B dye for 72 h and placed in plaster stone. After that, the specimens were submitted to longitudinal abrasion until half of the root remained. The linear dye leakage was observed in these mid-roots between the root canal wall and retrofilling. The linear dye leakage was measured with Image Lab software, and the results were statistically analyzed with Student's t test. There were no statistically significant differences between the two groups (p > 0.05). The diode laser irradiation did not improve the apical sealing of MTA retrofillings under the conditions of this in vitro study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.