Bacterial resistance to the available marketed drugs has prompted the search of novel therapies; especially in regards of anti-virulence strategies that aim to make bacteria less pathogenic and/or decrease their probability to become resistant to therapy. Cinnamaldehyde is widely known for its antibacterial properties through mechanisms that include the interaction of this compound with bacterial cell walls. However, only a handful of studies have addressed its effects on bacterial virulence, especially when tested at sub-inhibitory concentrations. Herein, we show for the first time that cinnamaldehyde is bactericidal against Staphylococcus aureus and Enterococcus faecalis multidrug resistant strains and does not promote bacterial tolerance. Cinnamaldehyde actions were stronger on S. aureus as it was able to inhibit its hemolytic activity on human erythrocytes and reduce its adherence to latex. Furthermore, cinnamaldehyde enhanced the serum-dependent lysis of S. aureus. In vivo testing of cinnamaldehyde in Galleria mellonella larvae infected with S. aureus, showed this compound improves larvae survival whilst diminishing bacterial load in their hemolymph. We suggest that cinnamaldehyde may represent an alternative therapy to control S. aureus-induced bacterial infections as it presents the ability to reduce bacterial virulence/survival without promoting an adaptive phenotype.
Alcohol dehydrogenase activity was measured in samples of liver tissue from a group of alcoholic and non-alcoholic subjects to determine whether decreased liver alcohol dehydrogenase activity is a consequence of ethanol consumption or liver damage. The alcoholic patients were classified further into the foliowing groups: control subjects with no liver disease (group 1), subjects with non-cirrhotic liver disease (group 2), and subjects with cirrhotic liver disease (group 3). The nonalcoholic subjects were also divided, using the same criteria, into groups 4, 5, and 6, respectively.The analysis of the results showed no significant differences when mean alcohol dehydrogenase activities of alcoholic and nonalcoholic patients with similar degrees of liver pathology were compared (groups 1 v 4, 2 v 5, and 3 v 6. Alcohol dehydrogenase activity was, however, severely reduced in patients with liver disease compared with control subjects.Our findings suggest that alcohol consumption does not modify hepatic alcohol dehydrogenase activity. The reduction in specific alcohol dehydrogenase activity in alcoholic liver disease is a consequence of liver damage.
This study evaluated the effects of a polymeric biosurfactant produced by Trichosporon montevideense CLOA72 in the adhesion of Candida albicans and Candida krusei cells to human buccal epithelial cells and its interference in biofilm formation by these strains. The biofilm inhibition by biosurfactant (25 mg/mL) in C. krusei and C. albicans in polystyrene was reduced up to 79.5 and 85 %, respectively. In addition, the zeta potential and hydrodynamic diameter of the yeasts altered as a function of the biosurfactant concentration added to the cell suspension. The changes in the cell surface characteristics and the interface modification can contribute to the inhibition of the initial adherence of yeasts cells to the surface. In addition, the analyses of the biofilm matrix and planktonic cell surfaces demonstrated differences in carbohydrate and protein concentrations for the two studied strains, which may contribute to the modulation of cell adhesion or consolidation of biofilms, especially in C. krusei. This study suggests a possible application of the of CLOA72 biosurfactant in inhibiting the adhesion and formation of biofilms on biological surfaces by yeasts of the Candida genus.
Staphylococcus aureus is one of the most successful opportunistic pathogen able to cause serious infections due to its ability to produce virulence factors and acquire antimicrobial resistance. Recent reports indicate that the phenotypic changes in the cell wall and cell membrane are essential mechanisms related to the resistance to several antibacterial drugs (such as daptomycin and vancomycin). These alterations involve changes in cell wall composition and chemical modiications of some components (point mutation leading to modiication in phosphatidylglycerol molecule, in the production of the aberrations in peptidoglycan structure and decrease in autolytic activity of the components of the cell envelope), leading to changes in electric charge of the cell surface, cell membrane luidity and cell morphology. In fact, S. aureus develops several multifactorial and strainspeciic adaptive mechanisms to survival in host. The study of such mechanisms is very important. The aim of this chapter is to review the phenotypic mechanisms related to drug resistance in S. aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.