Background: Direct and real-time monitoring of lactate in the extracellular space can help elucidate the metabolic and modulatory role of lactate in the brain. Compared to in vivo studies, brain slices allow the investigation of the neural contribution separately from the effects of cerebrovascular response and permit easy control of recording conditions. Methods: We have used a platinized carbon fiber microelectrode platform to design an oxidase-based microbiosensor for monitoring lactate in brain slices with high spatial and temporal resolution operating at 32 °C. Lactate oxidase (Aerococcus viridans) was immobilized by crosslinking with glutaraldehyde and a layer of polyurethane was added to extend the linear range. Selectivity was improved by electropolymerization of m-phenylenediamine and concurrent use of a null sensor. Results: The lactate microbiosensor exhibited high sensitivity, selectivity, and optimal analytical performance at a pH and temperature compatible with recording in hippocampal slices. Evaluation of operational stability under conditions of repeated use supports the suitability of this design for up to three repeated assays. Conclusions: The microbiosensor displayed good analytical performance to monitor rapid changes in lactate concentration in the hippocampal tissue in response to potassium-evoked depolarization.
The intracranial measurement of local cerebral tissue oxygen levels—PbtO2—has become a useful tool for the critical care unit to investigate severe trauma and ischemia injury in patients. Our preliminary work in animal models supports the hypothesis that multi-site depth electrode recording of PbtO2 may give surgeons and critical care providers needed information about brain viability and the capacity for better recovery. Here, we present a surface morphology characterization and an electrochemical evaluation of the analytical properties toward oxygen detection of an FDA-approved, commercially available, clinical grade depth recording electrode comprising 12 Pt recording contacts. We found that the surface of the recording sites is composed of a thin film of smooth Pt and that the electrochemical behavior evaluated by cyclic voltammetry in acidic and neutral electrolyte is typical of polycrystalline Pt surface. The smoothness of the Pt surface was further corroborated by determination of the electrochemical active surface, confirming a roughness factor of 0.9. At an optimal working potential of −0.6 V vs. Ag/AgCl, the sensor displayed suitable values of sensitivity and limit of detection for in vivo PbtO2 measurements. Based on the reported catalytical properties of Pt toward the electroreduction reaction of O2, we propose that these probes could be repurposed for multisite monitoring of PbtO2 in vivo in the human brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.