We studied the methylation status of the p15(INK4B) and p16(INK4A) genes in 47 pediatric patients with primary MDS, its correlation with subtype, and the role of p15(INK4B) and p16(INK4A) in the evolution of MDS toward AML. Aberrant methylation of the p15(INK4B) gene was detected in 15 of 47 patients (32%), whereas only four patients demonstrated methylation of the p16(INK4A) gene (8%). The frequency of p15(INK4B) methylation was significantly higher in RAEB and RAEB-t subtypes (p<0.003). Aberrant methylation of the p16(INK4A) gene was also more frequent in the subtypes that characterize advanced stages of the disease (p<0.05). Evolution of disease was verified in 17 (36%) of the 47 patients. The association of p15(INK4B) and p16(INK4A) methylation status with evolution of disease was clearly significant (p<0.008 and p<0.05, respectively). These results suggest that methylation of the p15(INK4B) and p16(INK4A) genes is an epigenetic biomarker of pediatric disease evolution.
ABSTRACT. Multidrug resistance is the major cause of cancer chemotherapy failure. This phenotype is mainly due to the overexpression of the human ABCB1 gene. Several studies have shown that the transcriptional regulation of this gene is complex. Yet, the impact of this transcriptional regulation has not been well studied in a clinical setting. The acquired expression of ABCB1 is associated with the genomic instability of cancer cells. This includes the occurrence of mutational events that alter chromatin structures through epigenetic modifications such as promoter methylation. Therefore, it is important to introduce new clinical methods to monitor the methylation status of ABCB1 and determine its association with gene expression in order to be able to predict response to therapies. The high-resolution melting (HRM) method has emerged as a highly accurate and sensitive ABCB1 gene methylation analyses method to quantify methylation status at specific sites of DNA. Here, we established HRM parameters to evaluate the promoter methylation status of the ABCB1 gene. Our study is the first to standardize the HRM dissociation curve to evaluate ABCB1 gene methylation. The association between ABCB1 methylation status and gene expression in established cancer cell lines shows that this method is accurate and reliable.
The aim of this study was to analyse the expression profiles of DNMT1, DNMT3A, DNMT3B (components of DNA methylation machinery), TET2 and APOBEC3B (components of DNA demethylation machinery) in pediatric MDS patients and investigate their associations with MDS subtypes, cytogenetics, evolution to acute myeloid leukemia (AML) and p15 INK4B methylation level. Patients and Methods: The expressions of DNMT1, DNMT3A, DNMT3B, TET2, and APOBEC3B were evaluated in 39 pediatric MDS patients by real-time quantitative PCR (qPCR). The quantification of p15 INK4B methylation levels (MtL) was performed in 20 pediatric MDS patients by pyrosequencing. Mann-Whitney test was used to evaluate possible differences between the expression levels of selected in patients and donors, according to MDS subtypes, karyotypes, evolution to AML and p15 INK4B MtL. The correlations between the expression levels of the different genes were assessed by Spearman rank correlation coefficient. Results: We found that DNMTs expression levels were higher in pediatric MDS compared to donors [DNMT1 (p<0.03), DNMT3A (p<0.03), DNMT3B (p<0.02)]. TET2 and APOBEC3B expression levels did not show a statistically significant difference between pediatric patients and donors. Considering MDS subtypes, patients at initial stage presented DNMT1 overexpression (p<0.01), while DNMT3A (p<0.02) and DNMT3B (p<0.007) were overexpressed in advanced subtypes. TET2 and APOBEC3B expression did not differ in MDS subtypes. DNMT1 (p<0.03), DNMT3B (p<0.03), and APOBEC3B (p<0.04) expression was higher in patients with normal karyotypes, while patients with abnormal karyotypes showed higher DNMT3A expression (p<0.03). Karyotypes had no association with TET2 expression. DNMTs overexpression was observed in patients who showed disease evolution. A positive correlation was found between DNMTs expression and between APOBEC3B and DNMT3A/DNMT3B. However, TET2 expression was not correlated with DNMTs or APOBEC3B. p15 INK4B MtL was higher in pediatric MDS patients compared with donors (p<0.03) and its hypermethylation was associated with increased DNMT1 expression (p<0.009). Conclusion: Our results suggest that the overexpression of DNMTs and an imbalance between the expressions of the DNA methylation/demethylation machinery components play an important role in MDS development and evolution to AML. These results have clinical implications indicating the importance of DNMTs inhibitors for preventing or delaying the progression to leukemia in pediatric MDS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.