Many power wheelchair control interfaces are not sufficient for individuals with severely limited upper limb mobility. The majority of controllers that do not rely on coordinated arm and hand movements provide users a limited vocabulary of commands and often do not take advantage of the user’s residual motion. We developed a body-machine interface (BMI) that leverages the flexibility and customizability of redundant control by using high dimensional changes in shoulder kinematics to generate proportional controls commands for a power wheelchair. In this study, three individuals with cervical spinal cord injuries were able to control the power wheelchair safely and accurately using only small shoulder movements. With the BMI, participants were able to achieve their desired trajectories and, after five sessions driving, were able to achieve smoothness that was similar to the smoothness with their current joystick. All participants were twice as slow using the BMI however improved with practice. Importantly, users were able to generalize training controlling a computer to driving a power wheelchair, and employed similar strategies when controlling both devices. Overall, this work suggests that the BMI can be an effective wheelchair control interface for individuals with high-level spinal cord injuries who have limited arm and hand control.
Spinal cord injury (SCI) survivors generally retain residual motor and sensory functions, which provide them with the means to control assistive devices. A body-machine interface (BMI) establishes a mapping from these residual body movements to control commands for an external device. In this study, we designed a BMI to smooth the way for operating computers, powered wheelchairs and other assistive technologies after cervical spinal cord injuries. The interface design included a comprehensive training paradigm with a range of diverse functional activities to enhance motor learning and retention. Two groups of SCI survivors and healthy control subjects participated in the study. The results indicate the effectiveness of the developed system as an alternative pathway for individuals with motor disabilities to control assistive devices while engaging in functional motor activity.
Body-machine interfaces (BMIs) decode upper-body motion for operating devices, such as computers and wheelchairs. We developed a low-cost portable BMI for survivors of cervical spinal cord injury and investigated it as a means to support personalized assistance and therapy within the home environment. Depending on the specific impairment of each participant, we modified the interface gains to restore a higher level of upper body mobility. The use of the BMI over one month led to increased range of motion and force at the shoulders in chronic survivors. Concurrently, subjects learned to reorganize their body motions as they practiced the control of a computer cursor to perform different tasks and games. The BMI allowed subjects to generate any movement of the cursor with different motions of their body. Through practice subjects demonstrated a tendency to increase the similarity between the body motions used to control the cursor in distinct tasks. Nevertheless, by the end of learning, some significant and persistent differences appeared to persist. This suggests the ability of the central nervous system to concurrently learn operating the BMI while exploiting the possibility to adapt the available mobility to the specific spatio-temporal requirements of each task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.